8,764 research outputs found
Feasibility study of a hand guided robotic drill for cochleostomy
The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design
Model Atmospheres for Irradiated Stars in pre-Cataclysmic Variables
Model atmospheres have been computed for M dwarfs that are strongly
irradiated by nearby hot companions. A variety of primary and secondary
spectral types are explored in addition to models specific to four known
systems: GD 245, NN Ser, AA Dor, and UU Sge. This work demonstrates that a
dramatic temperature inversion is possible on at least one hemisphere of an
irradiated M dwarf and the emergent spectrum will be significantly different
from an isolated M dwarf or a black body flux distribution. For the first time,
synthetic spectra suitable for direct comparison to high-resolution
observations of irradiated M dwarfs in non-mass transferring post-common
envelope binaries are presented. The effects of departures from local
thermodynamic equilibrium on the Balmer line profiles are also discussed.Comment: Accepted for publication in ApJ; 12 pages, 10 figure
Genetic alterations and cancer formation in a European flatfish at sites of different contamination burdens
Fish diseases are an indicator for marine ecosystem health since they provide a biological end-point of historical exposure to stressors. Liver cancer has been used to monitor the effects of exposure to anthropogenic pollution in flatfish for many years. The prevalence of liver cancer can exceed 20%. Despite the high prevalence and the opportunity of using flatfish to study environmentally induced cancer, the genetic and environmental factors driving tumor prevalence across sites are poorly understood. This study aims to define the link between genetic deterioration, liver disease progression, and anthropogenic contaminant exposures in the flatfish dab (Limanda limanda). We assessed genetic changes in a conserved cancer gene, Retinoblastoma (Rb), in association with histological diagnosis of normal, pretumor, and tumor pathologies in the livers of 165 fish from six sites in the North Sea and English Channel. The highest concentrations of metals (especially cadmium) and organic chemicals correlated with the presence of tumor pathology and with defined genetic profiles of the Rb gene, from these sites. Different Rb genetic profiles were found in liver tissue near each tumor phenotype, giving insight into the mechanistic molecular-level cause of the liver pathologies. Different Rb profiles were also found at sampling sites of differing contaminant burdens. Additionally, profiles indicated that histological “normal” fish from Dogger sampling locations possessed Rb profiles associated with pretumor disease. This study highlights an association between Rb and specific contaminants (especially cadmium) in the molecular etiology of dab liver tumorigenesis
How to harness the full potential of integrated catchment management as a pathway to sustainability
Water resource management authorities globally are increasingly adopting regional ecosystem approaches and reflexive governance as pathways to sustainable development (Paton et al., 2004; Vos et al.,2006). An integrated collaborative approach to natural resource management at the catchment scale is a strong theme in the recent literature (e.g., Lovell et al. 2002; Painter & Memon, 2008). New Zealand’s Resource Management Act (RMA), enacted in 1991, is a devolved planning mandate forintegrated natural resource management exercised by elected regional councils. The territorial jurisdiction of regional councils established in 1988 was purposely defined on the basis of groups of large water catchments (including groundwater aquifers) to facilitate an integrated approach to natural resource management. Integrated management of water allocation, water quality and related land management are primary functions of regional councils. However, regional councils have shied away from exercising their devolved integrated water planning mandate at the subregional catchment scale. Instead, provisions of first generation regional water plans tend to be framed region-wide in scope. In some plans, water quality and quantity issues are addressed separately with limited linkages, a reflection of poor integration
Can the United States Afford a “No-Fault” System of Compensation for Medical Injury?
One of the key issues separating US critics of a no-fault alternative to the tort system for compensating victims of medical injury from supporters is its anticipated cost. Results from a study are presented that estimate the costs of a no-fault system, one that is similar to the system now in operation in Sweden, within the context of the US health care system
Spin transport in ferromagnet-InSb nanowire quantum devices
Signatures of Majorana zero modes (MZMs), which are the building blocks for
fault-tolerant topological quantum computing, have been observed in
semiconductor nanowires (NW) with strong spin-orbital-interaction (SOI), such
as InSb and InAs NWs with proximity-induced superconductivity. Realizing
topological superconductivity and MZMs in this most widely-studied platform
also requires eliminating spin degeneracy, which is realized by applying a
magnetic field to induce a helical gap. However, the applied field can
adversely impact the induced superconducting state in the NWs and also places
geometric restrictions on the device, which can affect scaling of future
MZM-based quantum registers. These challenges could be circumvented by
integrating magnetic elements with the NWs. With this motivation, in this work
we report the first experimental investigation of spin transport across InSb
NWs, which are enabled by devices with ferromagnetic (FM) contacts. We observe
signatures of spin polarization and spin-dependent transport in the
quasi-one-dimensional ballistic regime. Moreover, we show that electrostatic
gating tunes the observed magnetic signal and also reveals a transport regime
where the device acts as a spin filter. These results open an avenue towards
developing MZM devices in which spin degeneracy is lifted locally, without the
need of an applied magnetic field. They also provide a path for realizing
spin-based devices that leverage spin-orbital states in quantum wires.Comment: 30 pages, 12 figure
- …