8,764 research outputs found

    Feasibility study of a hand guided robotic drill for cochleostomy

    Get PDF
    The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design

    Model Atmospheres for Irradiated Stars in pre-Cataclysmic Variables

    Full text link
    Model atmospheres have been computed for M dwarfs that are strongly irradiated by nearby hot companions. A variety of primary and secondary spectral types are explored in addition to models specific to four known systems: GD 245, NN Ser, AA Dor, and UU Sge. This work demonstrates that a dramatic temperature inversion is possible on at least one hemisphere of an irradiated M dwarf and the emergent spectrum will be significantly different from an isolated M dwarf or a black body flux distribution. For the first time, synthetic spectra suitable for direct comparison to high-resolution observations of irradiated M dwarfs in non-mass transferring post-common envelope binaries are presented. The effects of departures from local thermodynamic equilibrium on the Balmer line profiles are also discussed.Comment: Accepted for publication in ApJ; 12 pages, 10 figure

    Genetic alterations and cancer formation in a European flatfish at sites of different contamination burdens

    Get PDF
    Fish diseases are an indicator for marine ecosystem health since they provide a biological end-point of historical exposure to stressors. Liver cancer has been used to monitor the effects of exposure to anthropogenic pollution in flatfish for many years. The prevalence of liver cancer can exceed 20%. Despite the high prevalence and the opportunity of using flatfish to study environmentally induced cancer, the genetic and environmental factors driving tumor prevalence across sites are poorly understood. This study aims to define the link between genetic deterioration, liver disease progression, and anthropogenic contaminant exposures in the flatfish dab (Limanda limanda). We assessed genetic changes in a conserved cancer gene, Retinoblastoma (Rb), in association with histological diagnosis of normal, pretumor, and tumor pathologies in the livers of 165 fish from six sites in the North Sea and English Channel. The highest concentrations of metals (especially cadmium) and organic chemicals correlated with the presence of tumor pathology and with defined genetic profiles of the Rb gene, from these sites. Different Rb genetic profiles were found in liver tissue near each tumor phenotype, giving insight into the mechanistic molecular-level cause of the liver pathologies. Different Rb profiles were also found at sampling sites of differing contaminant burdens. Additionally, profiles indicated that histological “normal” fish from Dogger sampling locations possessed Rb profiles associated with pretumor disease. This study highlights an association between Rb and specific contaminants (especially cadmium) in the molecular etiology of dab liver tumorigenesis

    How to harness the full potential of integrated catchment management as a pathway to sustainability

    Get PDF
    Water resource management authorities globally are increasingly adopting regional ecosystem approaches and reflexive governance as pathways to sustainable development (Paton et al., 2004; Vos et al.,2006). An integrated collaborative approach to natural resource management at the catchment scale is a strong theme in the recent literature (e.g., Lovell et al. 2002; Painter & Memon, 2008). New Zealand’s Resource Management Act (RMA), enacted in 1991, is a devolved planning mandate forintegrated natural resource management exercised by elected regional councils. The territorial jurisdiction of regional councils established in 1988 was purposely defined on the basis of groups of large water catchments (including groundwater aquifers) to facilitate an integrated approach to natural resource management. Integrated management of water allocation, water quality and related land management are primary functions of regional councils. However, regional councils have shied away from exercising their devolved integrated water planning mandate at the subregional catchment scale. Instead, provisions of first generation regional water plans tend to be framed region-wide in scope. In some plans, water quality and quantity issues are addressed separately with limited linkages, a reflection of poor integration

    Can the United States Afford a “No-Fault” System of Compensation for Medical Injury?

    Get PDF
    One of the key issues separating US critics of a no-fault alternative to the tort system for compensating victims of medical injury from supporters is its anticipated cost. Results from a study are presented that estimate the costs of a no-fault system, one that is similar to the system now in operation in Sweden, within the context of the US health care system

    Spin transport in ferromagnet-InSb nanowire quantum devices

    Full text link
    Signatures of Majorana zero modes (MZMs), which are the building blocks for fault-tolerant topological quantum computing, have been observed in semiconductor nanowires (NW) with strong spin-orbital-interaction (SOI), such as InSb and InAs NWs with proximity-induced superconductivity. Realizing topological superconductivity and MZMs in this most widely-studied platform also requires eliminating spin degeneracy, which is realized by applying a magnetic field to induce a helical gap. However, the applied field can adversely impact the induced superconducting state in the NWs and also places geometric restrictions on the device, which can affect scaling of future MZM-based quantum registers. These challenges could be circumvented by integrating magnetic elements with the NWs. With this motivation, in this work we report the first experimental investigation of spin transport across InSb NWs, which are enabled by devices with ferromagnetic (FM) contacts. We observe signatures of spin polarization and spin-dependent transport in the quasi-one-dimensional ballistic regime. Moreover, we show that electrostatic gating tunes the observed magnetic signal and also reveals a transport regime where the device acts as a spin filter. These results open an avenue towards developing MZM devices in which spin degeneracy is lifted locally, without the need of an applied magnetic field. They also provide a path for realizing spin-based devices that leverage spin-orbital states in quantum wires.Comment: 30 pages, 12 figure
    • …
    corecore