254 research outputs found

    Dietary suppression of MHC-II expression in intestinal stem cells enhances intestinal tumorigenesis [preprint]

    Get PDF
    Little is known about how interactions between diet, immune recognition, and intestinal stem cells (ISCs) impact the early steps of intestinal tumorigenesis. Here, we show that a high fat diet (HFD) reduces the expression of the major histocompatibility complex II (MHC-II) genes in ISCs. This decline in ISC MHC-II expression in a HFD correlates with an altered intestinal microbiome composition and is recapitulated in antibiotic treated and germ-free mice on a control diet. Mechanistically, pattern recognition receptor and IFNg signaling regulate MHC-II expression in ISCs. Although MHC-II expression on ISCs is dispensable for stem cell function in organoid cultures in vitro, upon loss of the tumor suppressor gene Apc in a HFD, MHC-II- ISCs harbor greater in vivo tumor-initiating capacity than their MHC-II+ counterparts, thus implicating a role for epithelial MHC-II in suppressing tumorigenesis. Finally, ISC-specific genetic ablation of MHC-II in engineered Apc-mediated intestinal tumor models increases tumor burden in a cell autonomous manner. These findings highlight how a HFD alters the immune recognition properties of ISCs through the regulation of MHC-II expression in a manner that could contribute to intestinal tumorigenesis

    Long first exons and epigenetic marks distinguish conserved pachytene piRNA clusters from other mammalian genes

    Get PDF
    In the male germ cells of placental mammals, 26-30-nt-long PIWI-interacting RNAs (piRNAs) emerge when spermatocytes enter the pachytene phase of meiosis. In mice, pachytene piRNAs derive from ~100 discrete autosomal loci that produce canonical RNA polymerase II transcripts. These piRNA clusters bear 5\u27 caps and 3\u27 poly(A) tails, and often contain introns that are removed before nuclear export and processing into piRNAs. What marks pachytene piRNA clusters to produce piRNAs, and what confines their expression to the germline? We report that an unusually long first exon ( \u3e /= 10 kb) or a long, unspliced transcript correlates with germline-specific transcription and piRNA production. Our integrative analysis of transcriptome, piRNA, and epigenome datasets across multiple species reveals that a long first exon is an evolutionarily conserved feature of pachytene piRNA clusters. Furthermore, a highly methylated promoter, often containing a low or intermediate level of CG dinucleotides, correlates with germline expression and somatic silencing of pachytene piRNA clusters. Pachytene piRNA precursor transcripts bind THOC1 and THOC2, THO complex subunits known to promote transcriptional elongation and mRNA nuclear export. Together, these features may explain why the major sources of pachytene piRNA clusters specifically generate these unique small RNAs in the male germline of placental mammals

    Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis

    Get PDF
    Genetic lesions that activate KRAS account for approximately 30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles\u27 heel in tumors initiated by oncogenic Kras

    Depletion of TRRAP induces p53-independent senescence in liver cancer by downregulating mitotic genes

    Get PDF
    Hepatocellular carcinoma (HCC) is an aggressive subtype of liver cancer with few effective treatments and the underlying mechanisms that drive HCC pathogenesis remain poorly characterized. Identifying genes and pathways essential for HCC cell growth will aid the development of new targeted therapies for HCC. Using a kinome CRISPR screen in three human HCC cell lines, we identified transformation/transcription domain-associated protein (TRRAP) as an essential gene for HCC cell proliferation. TRRAP has been implicated in oncogenic transformation, but how it functions in cancer cell proliferation is not established. Here, we show that depletion of TRRAP or its co-factor, histone acetyltransferase KAT5, inhibits HCC cell growth via induction of p53- and p21-independent senescence. Integrated cancer genomics analyses using patient data and RNA-sequencing identified mitotic genes as key TRRAP/KAT5 targets in HCC, and subsequent cell cycle analyses revealed that TRRAP- and KAT5-depleted cells are arrested at G2/M phase. Depletion of TOP2A, a mitotic gene and TRRAP/KAT5 target, was sufficient to recapitulate the senescent phenotype of TRRAP/KAT5 knockdown. CONCLUSION: Our results uncover a role for TRRAP/KAT5 in promoting HCC cell proliferation via activation of mitotic genes. Targeting the TRRAP/KAT5 complex is a potential therapeutic strategy for HCC

    YAP1 withdrawal in hepatoblastoma drives therapeutic differentiation of tumor cells to functional hepatocyte-like cells

    Get PDF
    BACKGROUND and AIMS: Despite surgical and chemotherapeutic advances, the five-year survival rate for Stage IV Hepatoblastoma (HB), the predominant pediatric liver tumor, remains at 27%. YAP1 and beta-Catenin co-activation occurs in 80% of children\u27s HB; however, a lack of conditional genetic models precludes tumor maintenance exploration. Thus, the need for a targeted therapy remains unmet. Given the predominance of YAP1 and beta-Catenin activation in HB, we sought to evaluate YAP1 as a therapeutic target in HB. APPROACH and RESULTS: We engineered the first conditional HB murine model using hydrodynamic injection to deliver transposon plasmids encoding inducible YAP1(S127A) , constitutive beta-Catenin(DelN90) , and a luciferase reporter to murine liver. Tumor regression was evaluated using bioluminescent imaging, and tumor landscape characterized using RNA and ATAC sequencing, and DNA foot-printing. Here we show that YAP1(S127A) withdrawal mediates \u3e90% tumor regression with survival for 230+ days in mice. YAP1 (S127A) withdrawal promotes apoptosis in a subset of tumor cells and in remaining cells induces a cell fate switch driving therapeutic differentiation of HB tumors into Ki-67 negative hbHep cells with hepatocyte-like morphology and mature hepatocyte gene expression. YAP1 (S127A) withdrawal drives formation of hbHeps by modulating liver differentiation transcription factor (TF) occupancy. Indeed, tumor-derived hbHeps, consistent with their reprogrammed transcriptional landscape, regain partial hepatocyte function and rescue liver damage in mice. CONCLUSIONS: YAP1(S127A) withdrawal, without silencing oncogenic beta-Catenin, significantly regresses hepatoblastoma, providing the first in vivo data to support YAP1 as a therapeutic target for HB. YAP1(S127A) withdrawal alone sufficiently drives long-term regression in hepatoblastoma because it promotes cell death in a subset of tumor cells and modulates transcription factor occupancy to reverse the fate of residual tumor cells to mimic functional hepatocytes

    A-MYB/TCFL5 regulatory architecture ensures the production of pachytene piRNAs in placental mammals

    Get PDF
    In male mice, the transcription factor A-MYB initiates the transcription of pachytene piRNA genes during meiosis. Here, we report that A-MYB activates the transcription factor Tcfl5 produced in pachytene spermatocytes. Subsequently, A-MYB and TCFL5 reciprocally reinforce their own transcription to establish a positive feedback circuit that triggers pachytene piRNA production. TCFL5 regulates the expression of genes required for piRNA maturation and promotes transcription of evolutionarily young pachytene piRNA genes, whereas A-MYB activates the transcription of older pachytene piRNA genes. Intriguingly, pachytene piRNAs from TCFL5-dependent young loci initiate the production of piRNAs from A-MYB-dependent older loci, ensuring the self-propagation of pachytene piRNAs. A-MYB and TCFL5 act via a set of incoherent feedforward loops that drive regulation of gene expression by pachytene piRNAs during spermatogenesis. This regulatory architecture is conserved in rhesus macaque, suggesting that it was present in the last common ancestor of placental mammals

    A-MYB/TCFL5 regulatory architecture ensures the production of pachytene piRNAs in placental mammals

    Get PDF
    In male mice, the transcription factor A MYB initiates the transcription of pachytene piRNA genes during meiosis. Here, we report that A MYB activates the transcription factor Tcfl5 produced in pachytene spermatocytes. Subsequently, A MYB and TCFL5 reciprocally reinforce their own transcription to establish a positive feedback circuit that triggers pachytene piRNA production. TCFL5 regulates the expression of genes required for piRNA maturation and promotes transcription of evolutionarily young pachytene piRNA genes, whereas A-MYB activates the transcription of older pachytene piRNA genes. Intriguingly, pachytene piRNAs from TCFL5-dependent young loci initiates the production of piRNAs from A-MYB-dependent older loci ensuring the self-propagation of pachytene piRNAs. A MYB and TCFL5 act via a set of incoherent feedforward loops that drive regulation of gene expression by pachytene piRNAs during spermatogenesis. This regulatory architecture is conserved in rhesus macaque, suggesting that it was present in the last common ancestor of placental mammals

    On Hemangioblasts in Chicken

    Get PDF
    Hemangioblasts are bi-potential precursors for blood and endothelial cells (BCs and ECs). Existence of the hemangioblast in vivo by its strict definition, i.e. a clonal precursor giving rise to these two cell types after division, is still debated. Using a combination of mitotic figure analysis, cell labeling and long-term cell tracing, we show that, in chicken, cell division does not play a major role during the entire ventral mesoderm differentiation process after gastrulation. One eighth of cells do undergo at least one round of division, but mainly give rise to daughter cells contributing to the same lineage. Approximately 7% of the dividing cells that contribute to either the BC or EC lineage meet the criteria of true hemangioblasts, with one daughter cell becoming a BC and the other an EC. Our data suggest that hemangioblast-type generation of BC/EC occurs, but is not used as a major mechanism during early chicken development. It remains unclear, however, whether hemangioblast-like progenitor cells play a more prominent role in later development

    Metabolic Regulation in Progression to Autoimmune Diabetes

    Get PDF
    Recent evidence from serum metabolomics indicates that specific metabolic disturbances precede β-cell autoimmunity in humans and can be used to identify those children who subsequently progress to type 1 diabetes. The mechanisms behind these disturbances are unknown. Here we show the specificity of the pre-autoimmune metabolic changes, as indicated by their conservation in a murine model of type 1 diabetes. We performed a study in non-obese prediabetic (NOD) mice which recapitulated the design of the human study and derived the metabolic states from longitudinal lipidomics data. We show that female NOD mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern as prediabetic children. These metabolic changes are accompanied by enhanced glucose-stimulated insulin secretion, normoglycemia, upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut microbial diversity of the Clostridium leptum group. Together, the findings indicate that autoimmune diabetes is preceded by a state of increased metabolic demands on the islets resulting in elevated insulin secretion and suggest alternative metabolic related pathways as therapeutic targets to prevent diabetes
    corecore