58 research outputs found

    Sheathless microflow cytometry using viscoelastic fluids

    Get PDF
    Microflow cytometry is a powerful technique for characterization of particles suspended in a solution. In this work, we present a microflow cytometer based on viscoelastic focusing. 3D single-line focusing of microparticles was achieved in a straight capillary using viscoelastic focusing which alleviated the need for sheath flow or any other actuation mechanism. Optical detection was performed by fiber coupled light source and photodetectors. Using this system, we present the detection of microparticles suspended in three different viscoelastic solutions. The rheological properties of the solutions were measured and used to assess the focusing performance both analytically and numerically. The results were verified experimentally, and it has been shown that polyethlyene oxide (PEO) and hyaluronic acid (HA) based sheathless microflow cytometer demonstrates similar performance to state-of-the art flow cytometers. The sheathless microflow cytometer was shown to present 780 particles/s throughput and 5.8% CV for the forward scatter signal for HA-based focusing. The presented system is composed of a single capillary to accommodate the fluid and optical fibers to couple the light to the fluid of interest. Thanks to its simplicity, the system has the potential to widen the applicability of microflow cytometers. © 2017 The Author(s)

    Ultrashort pulse formation and evolution in mode-locked fiber lasers

    Get PDF
    Passive mode-locking in fiber lasers is investigated by numerical and experimental means. A non-distributed scalar model solving the nonlinear Schrödinger equation is implemented to study the starting behavior and intra-cavity dynamics numerically. Several operation regimes at positive net-cavity dispersion are experimentally accessed and studied in different environmentally stable, linear laser configurations. In particular, pulse formation and evolution in the chirped-pulse regime at highly positive cavity dispersion is discussed. Based on the experimental results a route to highly energetic pulse solutions is shown in numerical simulations. © 2011 Springer-Verlag

    Characterization of an ytterbium-doped double-clad fiber laser passively mode-locked by nonlinear polarization rotation

    Get PDF
    The properties of an ytterbium-doped double-clad fiber laser, passively mode-locked by nonlinear polarization rotation are investigated in this work. Cartographies of mode-locking regime versus halfwave plates orientations are presented for several values of the total cavity dispersion and for different pump powers. Bistability between the continuous and the mode-locking regimes is pointed out. The effect of the total group velocity dispersion is described with a master mode-locking equatio

    Sub-80 fe dissipative soliton large-mode-area fiber laser

    Get PDF
    We report on high-energy ultrashort pulse generation from an all-normal-dispersion large-mode-area fiber laser by exploiting an efficient combination of nonlinear polarization evolution (NPE) and a semiconductor-based saturable absorber mode-locking mechanism. The watt-level laser directly emits chirped pulses with a duration of 1 ps and 163 nJ of pulse energy. These can be compressed to 77 fs, generating megawatt-level peak power. Intracavity dynamics are discussed by numerical simulation, and the intracavity pulse evolution reveals that NPE plays a key role in pulse shaping. © 2010 Optical Society of America

    Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser

    Get PDF
    We report the generation of ultra-short bound states in a high-power ytterbium-doped fiber laser operating in the normal dispersion regime. We theoretically demonstrate that such bound states are stable solutions of the quintic complex Ginzburg–Landau equation

    Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition-grown InN thin film

    Get PDF
    We report the synthesis of colloidal InN nanocrystals (InN-NCs) in organic solution through nanosecond pulsed laser ablation of high pressure chemical vapor deposition-grown InN thin film on GaN/sapphire template substrate. The size, the structural, the optical, and the chemical characteristics of InN-NCs demonstrate that the colloidal InN crystalline nanostructures in ethanol are synthesized with spherical shape within 5.9-25.3, 5.45-34.8, 3.24-36 nm particle-size distributions, increasing the pulse energy value. The colloidal InN-NCs solutions present strong absorption edge tailoring from NIR region to UV region. © 2012 Springer Science+Business Media B.V

    High average and peak power femtosecond large-pitch photonic-crystal-fiber laser

    Get PDF
    We report on the generation of high-average-power and high-peak-power ultrashort pulses from a mode-locked fiber laser operating in the all-normal-dispersion regime. As gain medium, a large-mode-area ytterbium-doped large-pitch photonic-crystal fiber is used. The self-starting fiber laser delivers 27 W of average power at 50:57 MHz repetition rate, resulting in 534 nJ of pulse energy. The laser produces positively chirped 2 ps output pulses, which are compressed down to sub-100 fs, leading to pulse peak powers as high as 3:2 MW. © 2011 Optical Society of America

    Compact ultrafast oscillators and high performance ultrafast amplifiers based on ytterbium-doped fibers

    Get PDF
    This chapter reviews the fundamentals and achievements of ultrashort pulse generation and amplification in ytterbium-doped fibers. Compact and ultrastable passively mode-locked fiber oscillators represent an ideal seed source for high performance femtosecond fiber amplification systems, which have been scaled towards kW-level average power and pulse energies well above the mJ-level. These laser systems will have significant impact in numerous scientific and industrial applications. © Springer International Publishing Switzerland 2016

    High-energy femtosecond photonic crystal fiber laser

    Get PDF
    We report the generation of high-energy high-peak power pulses in an all-normal dispersion fiber laser featuring large-mode-area photonic crystal fibers. The self-starting chirped-pulse fiber oscillator delivers 11 W of average power at 15:5 MHz repetition rate, resulting in 710 nJ of pulse energy. The output pulses are dechirped outside the cavity from 7 ps to nearly transform-limited duration of 300 fs, leading to pulse peak powers as high as 1:9 MW. Numerical simulations reveal that pulse shaping is dominated by the amplitude modulation and spectral filtering provided by a resonant semiconductor saturable absorber. © 2010 Optical Society of America
    corecore