58 research outputs found

    Memory retention in wild-type and tau mutant Syrian hamsters

    Get PDF
    Rats are known to display a temporary deficit in memory function 6 h after training on a learning task, a phenomenon known as the ‘Kamin effect’. Later studies showed that maximal retrieval recurs in 24 h intervals after a single training and implied the role of the circadian clock in the suppression of memory retrieval at non-24 h intervals. This study aimed to investigate this further by analysing retention deficits following passive avoidance training in the Syrian hamster. The availability of hamsters carrying the tau mutation was exploited to address the role of the circadian system in periodic retention deficits. It was expected that tau mutant hamsters with an endogenous circadian period of approximately 20 h would have a high retention score at 20 h after training. Surprisingly, deficits in retention were found at 12, 18, 24, and 36 h after training in wild-type hamsters with best performance at 30 h after training. Tau mutant hamsters had significant deficits in memory retention at 20, 24, and 30 h, and no clear periodicity in retention could be observed. Step-through latency scores for mutant hamsters were low at all times except training-testing intervals of 0.25 and 6 h. These results demonstrate the absence of clear memory deficit oscillations in both wild-type and mutant hamsters, and may suggest in particular a long-termmemory deficit in tau mutant hamsters.

    Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes

    Get PDF
    The mammalian circadian system is composed of a light-entrainable central clock in the suprachiasmatic nuclei (SCN) of the brain and peripheral clocks in virtually any other tissue. It allows the organism to optimally adjust metabolic, physiological and behavioral functions to the physiological needs it will have at specific time of the day. According to the resonance theory, such rhythms are only advantageous to an organism when in tune with the environment, which is illustrated by the adverse health effects originating from chronic circadian disruption by jetlag and shift work. Using short-period Cry1 and long-period Cry2 deficient mice as models for morningness and eveningness, respectively, we explored the effect of chronotype on the phase relationship between the central SCN clock and peripheral clocks in other organs. Whereas the behavioral activity patterns and circadian gene expression in the SCN of light-entrained Cry1-/- and Cry2-/- mice largely overlapped with that of wild type mice, expression of clock and clock controlled genes in liver, kidney, small intestine, and skin was shown to be markedly phase-advanced or phase-delayed, respectively. Likewise, circadian rhythms in urinary corticosterone were shown to display a significantly altered phase relationship similar to that of gene expression in peripheral tissues. We show that the daily dissonance between peripheral clocks and the environment did not affect the lifespan of Cry1-/- or Cry2-/- mice. Nonetheless, the phase-shifted peripheral clocks in light-entrained mice with morningness and eveningness-like phenotypes may have implications for personalized preventive and therapeutic (i.e. chronomodulation-based) health care for people with early and late chron

    Does the Precision of a Biological Clock Depend upon Its Period? Effects of the Duper and tau Mutations in Syrian Hamsters

    Get PDF
    Mutations which alter the feedback loops that generate circadian rhythms may provide insight into their insensitivity to perturbation robustness) and their consistency of period (precision). I examined relationships between endogenous period, activity and rest (τDD, α and ρ) in Syrian hamsters using two different mutations, duper and tau, both of which speed up the circadian clock. I generated 8 strains of hamsters that are homozygous or heterozygous for the tau, duper, and wild type alleles in all combinations. The endogenous period of activity onsets among these strains ranged from 17.94+0.04 to 24.13±0.04 h. Contrary to predictions, the variability of period was unrelated to its absolute value: all strains showed similar variability of τDD when activity onsets and acrophase were used as phase markers. The τDD of activity offsets was more variable than onsets but also differed little between genotypes. Cycle variation and precision were not correlated with τDD within any strain, and only weakly correlated when all strains are considered together. Only in animals homozygous for both mutations (super duper hamsters) were cycle variation and precision reduced. Rhythm amplitude differed between strains and was positively correlated with τDD and precision. All genotypes showed negative correlations between α and ρ. This confirms the expectation that deviations in the duration of subjective day and night should offset one another in order to conserve circadian period, even though homeostatic maintenance of energy reserves predicts that longer intervals of activity or rest would be followed by longer durations of rest or activity. Females consistently showed greater variability of the period of activity onset and acrophase, and of α, but variability of the period of offset differed between sexes only in super duper hamsters. Despite the differences between genotypes in τDD, ρ was consistently more strongly correlated with the preceding than the succeeding α

    The Circadian Clock Protein CRY1 Is a Negative Regulator of HIF-1 alpha

    Get PDF
    The circadian clock and the hypoxia-signaling pathway are regulated by an integrated interplay of positive and negative feedback limbs that incorporate energy homeostasis and carcinogenesis. We show that the negative circadian regulator CRY1 is also a negative regulator of hypoxia-inducible factor (HIF). Mechanistically, CRY1 interacts with the basic-helix-loop-helix domain of HIF-1a via its tail region. Subsequently, CRY1 reduces HIF-1a half-life and binding of HIFs to target gene promoters. This appeared to be CRY1 specific because genetic disruption of CRY1, but not CRY2, affected the hypoxia response. Furthermore, CRY1 deficiency could induce cellular HIF levels, proliferation, and migration, which could be reversed by CRISPR/Cas9- or short hairpin RNA-mediated HIF knockout. Altogether, our study provides a mechanistic explanation for genetic association studies linking a disruption of the circadian clock with hypoxia-associated processes such as carcinogenesis

    Minimum Criteria for DNA Damage-Induced Phase Advances in Circadian Rhythms

    Get PDF
    Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however, behave distinctively in terms of their periods and phases in response to external influences such as light, temperature, nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of the cell cycle can be attributed to the cell cycle inhibitor kinase Wee1 (which is regulated by the heterodimeric circadian clock transcription factor, BMAL1/CLK), and possibly in conjunction with other cell cycle components that are known to be regulated by the circadian clock (i.e., c-Myc and cyclin D1). It has also been shown that DNA damage-induced activation of the cell cycle regulator, Chk2, leads to phosphorylation and destruction of a circadian clock component (i.e., PER1 in Mus or FRQ in Neurospora crassa). However, the molecular mechanism underlying how DNA damage causes predominantly phase advances in the circadian clock remains unknown. In order to address this question, we employ mathematical modeling to simulate different phase response curves (PRCs) from either dexamethasone (Dex) or IR treatment experiments. Dex is known to synchronize circadian rhythms in cell culture and may generate both phase advances and delays. We observe unique phase responses with minimum delays of the circadian clock upon DNA damage when two criteria are met: (1) existence of an autocatalytic positive feedback mechanism in addition to the time-delayed negative feedback loop in the clock system and (2) Chk2-dependent phosphorylation and degradation of PERs that are not bound to BMAL1/CLK

    The precision of circadian clocks: Assessment and analysis in Syrian hamsters

    Get PDF
    Locomotor activity recordings of Syrian hamsters were systematically analyzed to estimate the precision of the overt circadian activity rhythm in constant darkness. Phase variation, i.e., the standard deviation of phase markers around the regression line, varied with the definition of phase. Smallest phase variation was found in the onset of wheel running activity defined by 1h running means of the raw data.. Both lower and higher degrees of smoothing lead to decreased precision measured in the overt rhythm. With passive infrared recordings, the midpoint of activity defined by 3h running means was the least variable. This demonstrates that the choice of phase marker should vary between recording methods. Phase variation decreased with increasing activity and was larger in females than in males. By calculating the average cycle variation and serial covariance of consecutive cycles, we estimated the contribution of 'clock' and 'nonclock' related processes to the overt-rhythm variability. Variance in precision between phase markers could be shown to be attributable mainly to nonclock processes. Variance in pacemaker cycle length appeared reduced in wheel running activity records compared with passive infrared sensing records, suggesting feedback from running activity onto pacemaker function

    Temporal organisation of hibernation in wild-type and tau mutant Syrian hamsters

    Get PDF
    The temporal pattern of hibernation was studied in three genotypes of Syrian hamsters with different circadian periodicity to assess a potential circadian control of alternating torpor and euthermy. We recorded the pattern of hibernation by measuring activity in continuous dim light and constant environmental temperature (6 ± 1 °C). In spite of differences in the endogenous circadian period of three genotypes (tau +/+: ≅24 h, tau +/-: ≅22 h, tau -/-: ≅20 h) torpor bout duration was statistically indistinguishable (tau +/+: 86.9 ± 5.3 h; tau +/-: 94.2 ± 3.3 h; tau -/-: 88.8 ± 6.2 h). The time between two consecutive arousals from torpor showed unimodal distributions not significantly different between genotypes. The first entry into torpor occurred within the active phase of the circadian cycle in all genotypes whereas the first arousal from torpor appeared to be timed randomly with respect to the prior circadian cycle. The amplitude of the activity rhythm was lower after hibernation compared with the amplitude before hibernation. The results suggest that in the Syrian hamster the circadian system does not control periodicity of torpor and arousal onsets in prolonged hibernation at 6 °C.

    New localities of Rubus clusii (Rosaceae) seriously expanding it range towards the East

    No full text
    Rubus clusii Borbás is a species which occurs in Central Europe, from southern Germany, Czech Republic, southwestern Slovakia, through western Hungary andAustria to Slovenia. Nine new localities of this taxon were found in southeastern Poland, which considerably extends its geographical range. The results of one study suggest that the present definition of the species range was based on incomplete data, missing its potential localities. Therefore, we expect further extension with more localities identified
    corecore