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The Precision of Circadian Clocks: Assessment and

Analysis in Syrian Hamsters

Serge Daan* and Małgorzata Oklejewicz

Zoological Laboratory, Centre for Behaviour and Neurosciences,

University of Groningen, The Netherlands

ABSTRACT

Locomotor activity recordings of Syrian hamsters were systematically analyzed to

estimate the precision of the overt circadian activity rhythm in constant darkness. Phase

variation, i.e., the standard deviation of phasemarkers around the regression line, varied

with the definition of phase. Smallest phase variation was found in the onset of wheel

running activity defined by 1h running means of the raw data. Both lower and higher

degrees of smoothing lead to decreased precision measured in the overt rhythm. With

passive infrared recordings, the midpoint of activity defined by 3h running means was

the least variable. This demonstrates that the choice of phase marker should vary

between recording methods. Phase variation decreased with increasing activity and was

larger in females than in males. By calculating the average cycle variation and serial

covariance of consecutive cycles, we estimated the contribution of ‘clock’ and ‘non-

clock’ related processes to the overt rhythm variability. Variance in precision between

phasemarkers could be shown to be attributablemainly to nonclock processes. Variance

in pacemaker cycle length appeared reduced inwheel running activity records compared

with passive infrared sensing records, suggesting feedback from running activity onto

pacemaker function.
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INTRODUCTION

The standard deviation of consecutive circadian cycles is not a popular parameter.

Chronobiologists reporting on free-running circadian rhythms measure the average cycle

length (t), but rarely its variance. Yet precision, the reciprocal of the standard deviation,

possibly reveals interestingpropertiesof theunderlyingrhythmgenerator.Precisionhasbeen

proposed toreflect (a) thewaveformof theendogenouspacemaker (Aschoffetal.,1971), (b)a

selective premium on endogenous periods close to the zeitgeber period (Pittendrigh and

Daan, 1976b), and (c) the number of neuronal elements forming the pacemaker (Enright,

1980).These are all inferences about fundamental properties of thegeneratingoscillator.We

know that the variance on cycle length is partially attributable to this oscillator but also

partially to processes downstream from the oscillator. The variance can be empirically

partitioned into pacemaker-related variance and ancillary (downstream) processes on the

basisof theserial correlationbetweensuccessivecycles (PittendrighandDaan,1976a).Thus,

increased variance of the overt rhythm does not necessarily reflect increased variance of the

pacemaker. Different phase definitions applied to the same overt rhythm yield different

standard deviations (Morin and Cummings, 1981).

The definition of phase markers is of decisive importance for the assessment of

precision. Investigators have employed very different markers even in the case of the onset

of activity in standard activity rhythms. Often, these are defined in a somewhat arbitrary

manner, e.g., by selecting the first 5min bin in which activity attained 20% of maximal

activity in a given cycle (Scarbrough and Turek, 1996) or by estimating the fifth percentile

of the number of minutes with activity during 15h of a daily cycle (Morin and Cummings,

1981). Such approaches involve some sort of smoothing or bandpass filtering to reduce

unwanted variance. We need to know how such definition of phase markers affects the

measure of precision under study.

Selectionof theonsetorendofactivityormeasuresofcentral tendency furtheraffects the

conclusions. Aschoff et al. (1971) have pointed out that the precision of onset and end of

activity vary in oppositemannerwith light intensity andwith spontaneousmean cycle length

as affected by light intensity.Under standard conditions of constant darkness the precisionof

thedailyonsetofactivity timeisoftengreater thanthatof theendofactivity.Researchershave

therefore generally agreed on the use of activity onset as a phase marker. Little is known on

several other phase markers such as midpoint of activity [promoted especially by Aschoff

(1965)] or the center of gravity [introduced as a circadian phase marker by Kenagy (1980)].

A further factor potentially affecting analytical results is the recording method, e.g.,

running wheel revolutions, light beam interruptions, or body temperature transmission.

While the high precision of activity onset seems typical for wheel running records, other

methods may well lead to other maximum-precision phase markers.

We have attempted to improve our understanding of the effects of recording method

and phase definition on both the cycle-to-cycle variance in the overt rhythm and on the

partitioned variance in underlying pacemaker period. For this purpose we have

systematically investigated 10 different markers and their dependence on circadian period,

using Syrian hamsters. A large data set of freerun records in DD was available, both from

running wheel and passive infrared recording. These records were all obtained under

standard conditions in the process of screening the offspring of heterozygote crossings of

tau mutant Syrian hamsters, for studies on the effects of the tau mutation on a series of
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variables of temporal organization of behavior (e.g., Oklejewicz and Daan, 2002;

Oklejewicz et al., 2001a,b,c). In this paper we solely exploit the wildtype hamster records

ðn ¼ 204Þ: These were analyzed to address four questions: (a) How is precision affected

by the definition of phase markers? (b) How does recording method affect which phase

marker yields maximal precision? (c) How does precision vary with the amount of activity

and with sex of the hamster ? (d) Do differences in precision between markers and between

methods reflect differences in pacemaker periods or in ancillary processes?

METHODS

All Syrian hamsters used were born in the breeding colony under LD 14:10 at

Zoological Laboratory, Haren, The Netherlands. They all were born from crossings

between parents both heterozygote for the tau mutation (Ralph and Menaker, 1988).

Breeding stocks were originally obtained from Dr. Andrew Loudon (University

Manchester). After weaning at the age of about 40 days hamsters were placed individually

in recording cages (25 £ 25 £ 40 cm) in a room maintained at 23 ^ 28C under dim red

incandescent light (,0.1 lux). Cages were equipped with running wheels (RW; diameter

17 cm) or with Passive Infra-Red (PIR) movement detectors on top of the cage. Data were

collected by a custom built Event Recording System (ERS). This stores circuit closing

events accumulated in 2min bins on a computer hard disk, and transfers the data for up to

256 channels every night at midnight onto a floppy disk, which can be removed and read

out in daytime. Each hamster remained for circa 10d in the recording cage. The activity

rhythms were first subjected to classic periodogram analysis (Sokolove and Bushell,

1978). In total, 204 activity recordings were analyzed: running wheel data for 147

hamsters (females n ¼ 77; males n ¼ 57) and PIR data for 57 individuals (females n ¼ 31;

males n ¼ 26). The effects of the tau mutation on precision will be published elsewhere.

In all cases the last six days of data of a hamster’s activity record were used. A computer

programERSVARIA, custom-made byLeon Steijvers, and freely available from the authors,

identified in each cycle the center of gravity of the activity distribution (Kenagy, 1980) and

then three phase markers each for the onset, midpoint, and end of activity. The 10 different

phase markers are indicated with two examples in Figs. 1 and 2. The procedure is as follows:

† C (Center of gravity): The complete actogram is split up in time slices of 24h. In

each time slice the circular mean vector for activity is calculated. The direction of this

vector points to the center of gravity of the distribution. In the example of Figs. 1 and 2,

C’s are indicated in the panel (a).

Since the center of gravity is calculated on a circular distribution, it is nearly

insensitive to where in the cycle the first time slice starts. Subsequently, the phase markers

for the beginning of activity per cycle are found by searching the half-cycle (12h)

preceding C, while the phase markers for the end of activity are found by searching the

half cycle following C:

. B0 (Beginning of a) ¼ Earliest 2min bin with activity counts exceeding the six-

day average (Figs. 1a and 2a)
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. E0 (End of a) ¼ Last 2min bin with activity counts exceeding the six-day average

(Figs. 1a and 2a)

. M0 (Midpoint of a) ¼ Halfway between B0 and subsequent E0 (Figs. 1a and 2a)

. B1 ¼ Same as B0 except calculated after transforming the whole data set into 1h

running means (Figs. 1b and 2b)

. E1 ¼ Same as E0 except calculated after transforming the whole data set into 1h

running means (Figs. 1b and 2b)

. M1 ¼ Halfway between B1 and subsequent E1 (Figs. 1b and 2b)

. B3 ¼ Same as B0 except calculated after transforming the whole data set into 3h

running means (Figs. 1c and 2c)

. E3 ¼ Same as E0 except calculated after transforming the whole data set into 3h

running means (Figs. 1c and 2c)

. M3 ¼ Halfway between B3 and subsequent E3 (Figs. 1c and 2c)

Figure 1 highlights some of the problems involved in establishing circadian phase

markers. The main activity band is preceded by a tiny blip occurring 1–3h before. On days

1 and 2 this remains subthreshold; on day 3 it exceeds the threshold. Thereby B0 is found at

the onset of the main activity band on days 1 and 2 and 2h before it on day 3. In the 1h

Figure 1. Actogram (upper panel) and longitudinal plots (lower panel) of running wheel activity in

the Syrian hamster indicated with the 10 phase markers. (a): data in 2min bins, (b): 1h running

means, (c): 3h running means. For definitions of phase markers, see text.
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running mean the blip is always subthreshold, rendering variance in B1 smaller than in B0.

The variable second peak in activity determines E. This peak is usually narrow and on days

1 and 2 it remains subthreshold in the 3h running mean (Fig. 1c) increasing the variance in

E3 compared with E0 and E1. With PIR recording activity, patterns are often much more

fragmented (Fig. 2) than with wheel running. Under such conditions, smoothing

procedures applied greatly affect the determination of phase markers.

RESULTS

Effect of Phase Definition and Recording Method on Precision

We subjected 204 activity records to the program calculating these phase markers.

Then for each definition, we computed the regression of the markers on sequence number.

This yielded both a measure of t (slope) and of the standard deviation of phase markers

around the regression.We call the latter phase variation. The average values for period (t)

and phase variation are presented in Table 1 (running wheel) and Table 2 (PIR ¼ Passive

InfraRed sensing) along with the interindividual standard deviations of t. These data

Figure 2. Actogram (upper panel) and longitudinal plots (lower panel) of general activity in the

Syrian hamster indicated with the 10 phase markers. (a): data in 2min bins, (b): 1h running means,

(c): 3h running means.
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demonstrate that for wheel running the phase marker B1 (upward crossing of the 1h running

mean through the long-term average activity) yields the smallest average intraindividual

phase variation (0.27h), and hence the highest precision (Table 1). The offset is

considerably more variable on average than the onset, while the midpoint is intermediate.

Interindividual variation of t is always smallest in the periodogram analysis, possibly

because it integrates all the data instead of searching for markers in a restricted part of the

data set. Of course, periodogram analysis yields no measure of phase variation.

Table 1. Mean circadian cycle length and mean phase variation in Syrian

hamsters ðn ¼ 147Þ determined fromwheel running activity rhythm according to

10 different phase markers. Smallest standard deviations are highlighted in bold

type.

Phase marker Symbol Mean t

Interindividual

sd of t

Intraindividual

phase variation

Periodogram 23.91 0.23

Center of gravity C 23.89 0.64 0.63

2min raw data B0 24.01 0.44 0.69

M0 24.08 0.36 0.56

E0 24.09 0.46 0.63

1h running mean B1 24.00 0.27 0.27

M1 24.01 0.38 0.57

E1 23.98 0.54 1.15

3h running mean B3 24.00 0.33 0.36

M3 23.97 0.45 0.73

E3 23.91 0.63 1.45

Table 2. Inter- and intraindividual standard deviation of circadian cycle length

in Syrian hamsters ðn ¼ 57Þ determined from general activity rhythm by passive

Infrared sensing according to 10 different phase markers. Smallest standard

deviations are highlighted in bold type.

Phase marker Symbol Mean t

Interindividual

sd of t

Intraindividual

phase variation

Periodogram 24.08 0.52

Center of gravity C 24.14 0.65 1.23

2min raw data B0 24.21 0.55 1.28

M0 24.18 0.68 1.03

E0 24.08 0.70 1.17

1h running mean B1 24.32 0.81 1.63

M1 24.31 0.64 1.24

E1 24.13 0.77 1.79

3h running mean B3 24.36 0.69 1.21

M3 24.21 0.74 0.92

E3 24.13 0.97 1.58
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In animals without running wheels, and with their activity recorded via PIR sensing,

standard deviations, both inter- and intraindividual, are usually considerably higher than

with running wheels (Table 2). Here it is the midpoint of activity, based on 3h rather than

1h running means, which consistently yields the smallest (intraindividual) phase variation.

The smallest interindividual variation is again found in the t-estimates from periodogram

analysis.

Variation in Precision: Activity and Sex

For the phase marker leading to the most precise rhythm (smallest phase variation),

we evaluated how the phase variation varies with the amount of activity, and with the sex

of the hamsters. The results are plotted in Fig. 3. Clearly, increased activity leads to

smaller phase variation in both sexes separately. For all levels of spontaneous activity,

females had larger phase variation than males. Both sex and activity significantly

increased the explained variance in phase variation.

Partitioning of the Variance: Serial Correlation of t

Different phase markers thus yield different phase variations. However, they are

derived from the same data and indeed generated by the same pacemaker. Thus we

cannot conclude that differences in precision of the rhythm observed necessarily reflect

Figure 3. Mean phase variation (standard deviation of onsets defined by B1 around the regression)

for male and female hamsters in five classes of spontaneous mean activity level (revolutions per

minute). Error bars represent s.e.m.
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differences in precision of the pacemaker. There are processes involved in the control of

overt behavior that may contribute to the cycle variance in the overt rhythm. Pittendrigh

and Daan (1976a) have proposed a way in which variance of the observed cycle length

may be partitioned into variance in pacemaker cycles and variance in processes

peripheral to the pacemaker. The approach makes use of the standard deviation of cycle

length and the serial correlation in cycle length. This serial correlation is the correlation

between consecutive cycles of the overt rhythm. It reflects the extent to which an

occasional long cycle is compensated by the following short cycle. Strong

compensation, i.e., a more negative serial correlation coefficient, would indicate that

most of the observed variance is due to peripheral, not clock-related, processes. Since

there were two minor typographical errors in the original derivation published by

Pittendrigh and Daan (1976a), we repeat the formal argument in the Appendix. The

bottom line of the derivation is that the variation in pacemaker periods can be estimated

by sðtÞ ¼ sðtÞ
p
ð1þ 2rsÞ; where s(t) is the standard deviation of observed cycle lengths,

and rs is the serial correlation between consecutive cycles. Likewise, the variation in

peripheral processes is estimated by sðwÞ ¼ sðtÞ
p
ð2rsÞ: Obviously, this partitioning of

variance works only as long as 20:5 , rs , 0: with positive serial correlation there is

no compensation, with rs , 20:5 there would be overcompensation. We emphasize that

s(t), or cycle variation, is not the same measure as the phase variation (around the

regression) used in Tables 1 and 2.

Partitioning of the variance was done for all phase markers on the basis of all

actograms where at least five consecutive cycles could be measured, i.e., complete runs

with at least six phase markers. Runs with fewer data were discarded. The resulting

number of data sets on midpoints of activity (which require both onset and offset) was too

small to retain these in the analysis. For the remaining seven phase markers (C, B0, B1, B3,

E0, E1, E3) the average values for s(t) and rs are presented in Table 3, along with s(w) and

Table 3. Partitioning of the variance in cycle length in seven different circadian phase markers and

two methods of activity recording (running wheel and passive infrared). For each case, the table

shows: n—number of activity records where at least five circadian cycles were recorded; s(t)—the

average standard deviation in cycle length; rs—the average of the serial correlation coefficients

calculated in each run; s(w)—the computed standard deviation due to nonclock processes; s(t)—the

computed standard deviation due to clock cycle length. In all except one case 20:5 , rs , 0; as

required for variance partitioning. In the exception s(t) is estimated to be ,0.

Running activity (wheel) General activity (PIR)

Marker n s(t) rs s(w) s(t) n s(t) rs s(w) s(t)

C 126 0.85 2 .38 0.52 0.42 50 1.36 2 .40 0.86 0.60

B0 105 1.13 2 .31 0.63 0.69 44 2.27 2 .37 1.38 1.15

B1 99 0.45 2 .25 0.23 0.31 29 2.84 2 .44 1.88 1.00

B3 100 0.61 2 .30 0.33 0.39 27 1.72 2 .32 0.97 1.04

E0 128 1.74 2 .40 1.10 0.77 51 1.95 2 .38 1.20 0.97

E1 121 1.92 2 .46 1.30 0.55 47 3.15 2 .44 2.10 1.07

E3 111 2.49 2 .46 1.69 0.69 33 2.57 2 .56 1.93 ,0
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the calculated estimates of s(t). The omission of some runs because a phase could not be

determined explains why the numbers reported in Table 3 are often slightly less than those

in Tables 1 and 2.

The first conclusion from Table 3 is that indeed nearly all the average rs values are

between the boundary values of20.5 and 0.Hence there is good evidence for compensation

and for the idea that non–clock-related processes contribute to the variance in cycle length.

For wheel running records, the smallest variation in endogenous cycle length (s(t)) is

obtained using the onset of activity in a 1h or 3h running average (Table 3). For

general activity (PIR) records obtained without wheels the Center of Gravity method yields

the most precise estimates of pacemaker cycle length. This corresponds with the results

obtained in Table 2 in the sense that in non-wheel running activity records a measure of

central tendency of the activity—either activity midpoint or center of gravity—yields the

most precise phase marker.

In Fig. 4a, we have plotted the average rs values against the average s(t) for each

combination of recording method/phase reference, yielding 14 data points. The figure

reveals a clear negative association between s(t) and rs. Fig. 4b demonstrates that the

variation attributable to non–clock-related processes (s(w)) increases steeply with

increasing overall variation (s(t)), in fact more steeply than expected on the basis of

proportionality (a regression through the origin would be proportional). The variation

attributable to the underlying pacemaker (s(t)) increases much less steeply with s(t) as a

consequence of stronger negative serial correlation (rs). Thus, phase markers leading to

large variance in cycle length apparently overestimate the variance in endogenous

pacemaker cycle and underestimate its precision.

DISCUSSION

The analysis presented here underscores the importance of selecting the phase marker

yielding the most precise rhythm. In countless chronobiological studies, the overt rhythm

is used to unveil properties of the underlying pacemaker. As demonstrated in Fig. 4b,

variation in precision of the overt rhythm is mainly due to peripheral processes. With

phase definitions leading to small variance in cycle length, this variance is much closer to

that of the pacemaker. This result gives an empirical reason why phase markers leading to

the most precise measure should be preferred. The most precise rhythms most closely

reflect the pacemaker. Hence a systematic search for the phase marker yielding the most

precise rhythm is far from futile.

For any particular species or recording method one phase marker may be optimal (i.e.,

yielding maximal precision). This need not be the same, however, for all methods and

species. We compared the behavior of 10 phase markers for groups of hamsters with two

methods: wheel running and general activity by PIR sensing. Consistently, in wheel

running the onset yielded the most precise measure (Table 1). With general, non-wheel

running activity, measures of central tendency (center of gravity and midpoint) perform

better (Table 2). Aschoff (1965) used to propagate the midpoint of activity as the

appropriate phase marker, albeit without much success. When running wheels became

standard tools in chronobiology, researchers have usually preferred the onset of activity as
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the phase marker of choice. Correctly so. For other means of recording Aschoff may well

have been right.

Smoothing clearly affected the precision. With wheel running records the most

precise rhythm was obtained with an intermediate degree of smoothing the raw data:

running means over 1h rather than 3h. The less-precise overt rhythms of PIR records

required smoothing over a somewhat longer period (3h running means) to attain highest

precision. Such analysis is useful prior to the decision on optimal phase markers for a

rhythm.

We observed that precision increases with increasing level of activity (Fig. 3).

This is hardly surprising in view of the statistical law of large numbers (variance of

central tendencies decreases with increasing n). The difference between the sexes,

with males having higher precision or less phase variation, is also expected, but for

Figure 4. (a) The relation between mean standard deviation of cycle length and mean serial

correlation for each phase markers, and with both methods of activity recording. (b) The dependence

of clock and nonclock contributions to variation in the cycle length. Solid lines in both panels are

regressions for wheel running data, stippled lines for PIR data. Data correspond to Table 3.
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a biological reason. The effect of the estrous cycle leading to scalloping (Fitzgerald

and Zucker, 1976) increases the variance in consecutive cycles and has led

mammalian chronobiologists to prefer working with males over females.

The onset of wheel running in hamsters produced the highest precision of

circadian cycles in our data set, with an average cycle-to-cycle standard deviation of

0.45h (based on 1h running means). From the average serial correlation of 20.25 in

this case the variation in pacemaker cycles is estimated at 0.31h (Table 3). With PIR

records obtained without wheels these estimates are about twice as large. The data

thus suggest that the use of a wheel by hamsters affects the precision not only of the

overt rhythm, but indeed of the circadian pacemaker itself. This would not be

astonishing given the extensive evidence for feedback from wheel running onto the

pacemaker (Edgar et al., 1991; Mrosovsky et al., 1992). A study directed at this issue

comparing general activity rhythm precision in the same individuals with and without

a wheel would be required to firmly settle this issue.

The main message emerging from our analyses is that different recording methods do

lead to different optimal phase markers. The use of the onset of activity may be preferred

in wheel running records but is unlikely to be optimal for other means of recording

rhythms.

APPENDIX (AFTER PITTENDRIGH AND DAAN, 1976a, WITH

MINOR CORRECTIONS)

If pacemaker periods are denoted as t1, wake-up times as wi, and observed periods of

the rhythm as ti, it is clear that:

ti ¼ ti 2 wi þ wiþ1

and

ti þ tiþ1 ¼ ti þ tiþ1 2 wi þ wiþ2

Independent variations in w and t would then lead to:

s
2ðtÞ ¼ s

2ðtÞ þ 2s2ðwÞ ð1Þ

and

s
2ðti þ tiþ1Þ ¼ 2s2ðtÞ þ 2covsðtÞ ¼ 2s2ðtÞ þ 4s2ðwÞ þ 2covsðtÞ ð2Þ

where covs (t) indicates the covariance of successive observed periods of the rhythm.

Also,

s
2ðti þ tiþ1Þ ¼ 2s2ðtÞ þ 2s2ðwÞ ð3Þ

because of independence of t1, tiþ1, w1, wiþ2.
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From Eqs. (2) and (3), it follows that

s
2ðwÞ ¼ 2covsðtÞ

If in a sample covs (t) is estimated by r·s(t), with s(t) denoting the standard deviation of

t, then the variances of w and t are estimated by:

s2ðwÞ ¼ 2rss
2ðtÞ

s2ðtÞ ¼ ð1þ 2rsÞs2ðtÞ

thus,

sðwÞ ¼ sðtÞ
p
ð2rsÞ

sðtÞ ¼ sðtÞ
p
ð1þ 2rsÞ:
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