6,551 research outputs found

    A quantum violation of the second law?

    Get PDF
    An apparent violation of the second law of thermodynamics occurs when an atom coupled to a zero-temperature bath, being necessarily in an excited state, is used to extract work from the bath. Here the fallacy is that it takes work to couple the atom to the bath and this work must exceed that obtained from the atom. For the example of an oscillator coupled to a bath described by the single relaxation time model, the mean oscillator energy and the minimum work required to couple the oscillator to the bath are both calculated explicitly and in closed form. It is shown that the minimum work always exceeds the mean oscillator energy, so there is no violation of the second law

    The Application of Metabolomics to Probiotic and Prebiotic Interventions in Human Clinical Studies

    Get PDF
    There is an ever-increasing appreciation for our gut microbiota that plays a crucial role in the maintenance of health, as well as the development of disease. Probiotics are live bacteria that are consumed to increase the population of beneficial bacteria and prebiotics are dietary substrates intended to promote the propagation of beneficial bacteria. In order to optimize the use of probiotics and prebiotics, a more complete biochemical understanding of the impact that these treatments have on the community and functioning of the gut microbiota is required. Nucleic acid sequencing methods can provide highly detailed information on the composition of the microbial communities but provide less information on the actual function. As bacteria impart much of their influence on the host through the production of metabolites, there is much to be learned by the application of metabolomics. The focus of this review is on the use of metabolomics in the study of probiotic and prebiotic treatments in the context of human clinical trials. Assessment of the current state of this research will help guide the design of future studies to further elucidate the biochemical mechanism by which probiotics and prebiotics function and pave the way toward more personalized applications

    Rotation and Spin in Physics

    Full text link
    We delineate the role of rotation and spin in physics, discussing in order Newtonian classical physics, special relativity, quantum mechanics, quantum electrodynamics and general relativity. In the latter case, we discuss the generalization of the Kepler formula to post-Newtonian order (c2(c^{-2}) including spin effects and two-body effects. Experiments which verify the theoretical results for general relativistic spin-orbit effects are discussed as well as efforts being made to verify the spin-spin effects

    Tactile Thresholds are Preserved yet Cortical Sensory Function is Impaired in Chronic Non-Specific Low Back Pain Patients

    Get PDF
    Introduction: A substantial amount of evidence points to an alteration in brain structure and function patients with chronic non-specific low back pain (CNSLBP) [1-6]. One interpretation of these findings is that the observed brain changes may represent a disruption of the brain’s representations of the body part and the resultant body perception disturbance may underpin this clinical problem. The current study aimed to investigate sensory dysfunction in CNSLBP. Specifically we aimed to distinguish cortically mediated sensory dysfunction from peripheral dysfunction by comparing simple tactile thresholds with more complex cortically mediated sensory tests Methods: We investigated tactile thresholds (TTH), two point discrimination (TPD) and graphaesthesia over the lumbar spine of 19 CLBP patients and 19 age and sex matched healthy controls as a way of investigating whether CLBP patients present with a perceptual disturbance of their lumbar spine. Differences in performance of the sensory tests was explored using the Mann Whitney U Test and one-way between groups multivariate analysis of variance. Results: We found no difference in tactile threshold between the two groups (P=.0.751). There was a statistically significant difference between controls and LBP for TPD: F(1,36)=10.15, p=.003 and letter error rate: F(1, 36)=6.54 p=0.015. The data indicate that LBP patients had a larger lumbar TPD distance and a greater letter recognition error rate. Discussion: Both TPD and graphaesthesia are dependant on the integrity of the primary sensory cortex [7]. These data support existing findings of perceptual abnormality in chronic back pain [8] and the preservation of tactile thresholds is suggestive of cortical rather than peripheral sensory dysfunction. Amelioration of these abnormalities may present a target for therapeutic intervention

    Neutrino Masses in the Lee-Wick Standard Model

    Get PDF
    Recently, an extension of the standard model based on ideas of Lee and Wick has been discussed. This theory is free of quadratic divergences and hence has a Higgs mass that is stable against radiative corrections. Here, we address the question of whether or not it is possible to couple very heavy particles, with masses much greater than the weak scale, to the Lee-Wick standard model degrees of freedom and still preserve the stability of the weak scale. We show that in the LW-standard model the familiar see-saw mechanism for generating neutrino masses preserves the solution to the hierarchy puzzle provided by the higher derivative terms. The very heavy right handed neutrinos do not destabilize the Higgs mass. We give an example of new heavy degrees of freedom that would destabilize the hierarchy, and discuss a general mechanism for coupling other heavy degrees of freedom to the Higgs doublet while preserving the hierarchy.Comment: 7 pages, 1 figur

    Does the Third Law of Thermodynamics hold in the Quantum Regime?

    Get PDF
    The first in a long series of papers by John T. Lewis, G. W. Ford and the present author, considered the problem of the most general coupling of a quantum particle to a linear passive heat bath, in the course of which they derived an exact formula for the free energy of an oscillator coupled to a heat bath in thermal equilibrium at temperature T. This formula, and its later extension to three dimensions to incorporate a magnetic field, has proved to be invaluable in analyzing problems in quantum thermodynamics. Here, we address the question raised in our title viz. Nernst's third law of thermodynamics

    Minimal Extension of the Standard Model Scalar Sector

    Get PDF
    The minimal extension of the scalar sector of the standard model contains an additional real scalar field with no gauge quantum numbers. Such a field does not couple to the quarks and leptons directly but rather through its mixing with the standard model Higgs field. We examine the phenomenology of this model focusing on the region of parameter space where the new scalar particle is significantly lighter than the usual Higgs scalar and has small mixing with it. In this region of parameter space most of the properties of the additional scalar particle are independent of the details of the scalar potential. Furthermore the properties of the scalar that is mostly the standard model Higgs can be drastically modified since its dominant branching ratio may be to a pair of the new lighter scalars.Comment: 4 pages, 2 figure

    Stochastic B\"acklund transformations

    Full text link
    How does one introduce randomness into a classical dynamical system in order to produce something which is related to the `corresponding' quantum system? We consider this question from a probabilistic point of view, in the context of some integrable Hamiltonian systems

    Signatures of the Youngest Starbursts: Optically-thick Thermal Bremsstrahlung Radio Sources in Henize 2-10

    Full text link
    VLA radio continuum imaging reveals compact (<8 pc) ~1 mJy radio sources in the central 5" starburst region of the blue compact galaxy Henize 2-10. We interpret these radio knots as extremely young, ultra-dense HII regions. We model their luminosities and spectral energy distributions, finding that they are consistent with unusually dense HII regions having electron densities, 1500 cm^-3 < n_e < 5000 cm^-3, and sizes of 3-8 pc. Since these H II regions are not visible in optical images, we propose that the radio data preferentially reveal the youngest, densest, and most highly obscured starforming events. Energy considerations imply that each of the five \HII regions contains ~750 O7V equivalent stars, greater than the number found in 30 Doradus in the LMC. The high densities imply an over-pressure compared to the typical interstellar medium so that such objects must be short-lived (<0.5 Myr expansion timescales). We conclude that the radio continuum maps reveal the very young (<0.5 Myr) precursors of ``super starclusters'' or ``proto globular clusters'' which are prominent at optical and UV wavelengths in He 2-10. If the ultra-dense HII regions are typical of those which we predict will be found in other starbursting systems, then super starclusters spend 15% of their lifetime in heavily-obscured environments, similar to Galactic ultra-compact HII regions. This body of work leads us to propose that massive extragalactic star clusters (i.e. proto globular clusters) with ages <10^6 yr may be most easily identified by finding compact radio sources with optically-thick thermal bremsstrahlung spectral signatures.Comment: AASTeX, 8 figures 2 included with psfig in text; other 6 in jpeg format; Postscript versions of figures may be found at http://zem.ucolick.org/chip/Research/young_clusters.html -- Accepted for publication in the Astrophysical Journa
    corecore