422 research outputs found

    Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone

    Get PDF
    β-type titanium alloys with low Young's modulus are required to inhibit bone atrophy and enhance bone remodeling for implants used to substitute failed hard tissue. At the same time, these titanium alloys are required to have high static and dynamic strength. On the other hand, metallic biomaterials with variable Young's modulus are required to satisfy the needs of both patients and surgeons, namely, low and high Young's moduli, respectively. In this paper, we have discussed effective methods to improve the static and dynamic strength while maintaining low Young's modulus for β-type titanium alloys used in biomedical applications. Then, the advantage of low Young's modulus of β-type titanium alloys in biomedical applications has been discussed from the perspective of inhibiting bone atrophy and enhancing bone remodeling. Further, we have discussed the development of β-type titanium alloys with a self-adjusting Young's modulus for use in removable implants

    Molecular phylogenetic analyses reveal a close evolutionary relationship between Podosphaera (Erysiphales: Erysiphaceae) and its rosaceous hosts

    Get PDF
    Podosphaera is a genus of the powdery mildew fungi belonging to the tribe Cystotheceae of the Erysiphaceae. Among the host plants of Podosphaera, 86 % of hosts of the section Podosphaera and 57 % hosts of the subsection Sphaerotheca belong to the Rosaceae. In order to reconstruct the phylogeny of Podosphaera and to determine evolutionary relationships between Podosphaera and its host plants, we used 152 ITS sequences and 69 28S rDNA sequences of Podosphaera for phylogenetic analyses. As a result, Podosphaera was divided into two large clades: clade 1, consisting of the section Podosphaera on Prunus (P. tridactyla s.l.) and subsection Magnicellulatae; and clade 2, composed of the remaining member of section Podosphaera and subsection Sphaerotheca. Because section Podosphaera takes a basal position in both clades, section Podosphaera may be ancestral in the genus Podosphaera, and the subsections Sphaerotheca and Magnicellulatae may have evolved from section Podosphaera independently. Podosphaera isolates from the respective subfamilies of Rosaceae each formed different groups in the trees, suggesting a close evolutionary relationship between Podosphaera spp. and their rosaceous hosts. However, tree topology comparison and molecular clock calibration did not support the possibility of co-speciation between Podosphaera and Rosaceae. Molecular phylogeny did not support species delimitation of P. aphanis, P. clandestina, P. ferruginea, P. spiraeae and P. tridactyla in their current circumscriptions, which suggests the need for revision of these species

    Quantitative and qualitative relationship between microstructural factors and fatigue lives under load- And strain-controlled conditions of Ti-5Al-2Sn-2Zr-4Cr-4Mo (Ti-17) fabricated using a 1500-ton forging simulator

    Full text link
    The fatigue lives of forged Ti-17 using a 1500-ton forging simulator subjected to different solution treatments and a common aging treatment were evaluated under both load- and strain-controlled conditions: high and low cycle fatigue lives, respectively. Then, the tensile properties and microstructures were also examined. Finally, the relationships among fatigue lives and the microstructural factors and tensile properties were examined. The microstructure after solution treatment at 1203 K, which is more than the β transus temperature, and aging treatment exhibits equiaxed prior β grains composed of fine acicular ¡. On the other hand, the microstructures after solution treatment at temperatures of 1063, 1123, and 1143 K, which are less than the β transus temperature, and aging treatment exhibit elongated prior β grains composed of two different microstructural feature regions, which are acicular α and fine spheroidal α phase regions. The 0.2% proof stress, σ₀.₂, and tensile strength, σB, increase with increasing solution treatment temperature up to 1143 K within the (α + β) region, but decrease with further increasing solution treatment temperature to 1203 K within the β region. The elongation (EL) and reduction of area (RA) decrease with increasing solution treatment temperature, and it becomes nearly 0% corresponding to a solution treatment temperature of 1203 K. The high cycle fatigue limit increases with increasing solution treatment temperature up to 1143 K, corresponding to the (α + β) region. However, it decreases with further increase in the solution treatment temperature to 1203 K in the β region. The fatigue ratio in high cycle fatigue life region is increasing with decreasing solution treatment temperature, namely increasing the volume fraction of the primary α phase, and it relates well qualitatively with the volume fraction of the primary α phase when the solution treatment temperature is less than the β transus temperature. The low cycle fatigue life increases with decreasing solution treatment temperature, namely increasing the volume fraction of the primary α phase. The low cycle fatigue life relates well quantitatively with the tensile true strain at breaking of the specimen and the volume fraction of the primary α phase for each total strain range of low cycle fatigue testing.Niinomi M., Akahori T., Nakai M., et al. Quantitative and qualitative relationship between microstructural factors and fatigue lives under load- And strain-controlled conditions of Ti-5Al-2Sn-2Zr-4Cr-4Mo (Ti-17) fabricated using a 1500-ton forging simulator. Materials Transactions 60, 1740 (2019); https://doi.org/10.2320/matertrans.ME201904

    Imprecise knowledge based design and development of titanium alloys for prosthetic applications

    Get PDF
    Imprecise knowledge on the composition–processing–microstructure–property correlation of titanium alloys combined with experimental data are used for developing rule based models for predicting the strength and elastic modulus of titanium alloys. The developed models are used for designing alloys suitable for orthopedic and dental applications. Reduced Space Searching Algorithm is employed for the multi-objective optimization to find composition, processing and microstructure of titanium alloys suitable for orthopedic applications. The conflicting requirements attributes of the alloys for this particular purpose are high strength with low elastic modulus, along with adequate biocompatibility and low costs. The ‘Pareto’ solutions developed through multi-objective optimization show that the preferred compositions for the fulfilling the above objectives lead to β or near β-alloys. The concept of decision making employed on the solutions leads to some compositions, which should provide better combination of the required attributes. The experimental development of some of the alloys has been carried out as guided by the model-based design methodology presented in this research. Primary characterizations of the alloys show encouraging results in terms of the mechanical properties
    corecore