1,325 research outputs found

    Scanning tunneling microscopy and spectroscopy studies of graphite edges

    Full text link
    We studied experimentally and theoretically the electronic local density of states (LDOS) near single step edges at the surface of exfoliated graphite. In scanning tunneling microscopy measurements, we observed the (3×3)R30(\sqrt{3} \times \sqrt{3}) R 30^{\circ} and honeycomb superstructures extending over 3-4 nm both from the zigzag and armchair edges. Calculations based on a density-functional derived non-orthogonal tight-binding model show that these superstructures can coexist if the two types of edges admix each other in real graphite step edges. Scanning tunneling spectroscopy measurements near the zigzag edge reveal a clear peak in the LDOS at an energy below the Fermi energy by 20 meV. No such a peak was observed near the armchair edge. We concluded that this peak corresponds to the "edge state" theoretically predicted for graphene ribbons, since a similar prominent LDOS peak due to the edge state is obtained by the first principles calculations.Comment: 4 pages, 6 figures, APF9, Appl. Surf. Sci. \bf{241}, 43 (2005

    Temperature dependence of the impurity-induced resonant state in Zn-doped Bi_2Sr_2CaCu_2O8+δ_{8+\delta} by Scanning Tunneling Spectroscopy

    Full text link
    We report on the temperature dependence of the impurity-induced resonant state in Zn-doped Bi_2Sr_2CaCu_2O8+δ_{8+\delta} by scanning tunneling spectroscopy at 30 mK < T < 52 K. It is known that a Zn impurity induces a sharp resonant peak in tunnel spectrum at an energy close to the Fermi level. We observed that the resonant peak survives up to 52 K. The peak broadens with increasing temperature, which is explained by the thermal effect. This result provides information to understand the origin of the resonant peak.Comment: 4 pages, 3 figures, to appear in Phys. Rev.

    STS Observations of Landau Levels at Graphite Surfaces

    Full text link
    Scanning tunneling spectroscopy measurements were made on surfaces of two different kinds of graphite samples, Kish graphite and highly oriented pyrolytic graphite (HOPG), at very low temperatures and in high magnetic fields. We observed a series of peaks in the tunnel spectra, which grow with increasing field, both at positive and negative bias voltages. These are associated with Landau quantization of the quasi two-dimensional electrons and holes in graphite in magnetic fields perpendicular to the basal plane. Almost field independent Landau levels fixed near the Fermi energy, which are characteristic of the graphite crystalline structure, were directly observed for the first time. Calculations of the local density of states at the graphite surfaces allow us to identify Kish graphite as bulk graphite and HOPG as graphite with finite thickness effectively

    Construction of a Versatile Ultra-Low Temperature Scanning Tunneling Microscope

    Full text link
    We constructed a dilution-refrigerator (DR) based ultra-low temperature scanning tunneling microscope (ULT-STM) which works at temperatures down to 30 mK, in magnetic fields up to 6 T and in ultrahigh vacuum (UHV). Besides these extreme operation conditions, this STM has several unique features not available in other DR based ULT-STMs. One can load STM tips as well as samples with clean surfaces prepared in a UHV environment to an STM head keeping low temperature and UHV conditions. After then, the system can be cooled back to near the base temperature within 3 hours. Due to these capabilities, it has a variety of applications not only for cleavable materials but also for almost all conducting materials. The present ULT-STM has also an exceptionally high stability in the presence of magnetic field and even during field sweep. We describe details of its design, performance and applications for low temperature physics.Comment: 6 pages, 9 figures. accepted for publication in Rev. Sci. Instru

    Extrinsic Spin Hall Effect Induced by Iridium Impurities in Copper

    Get PDF
    We study the extrinsic spin Hall effect induced by Ir impurities in Cu by injecting a pure spin current into a CuIr wire from a lateral spin valve structure. While no spin Hall effect is observed without Ir impurity, the spin Hall resistivity of CuIr increases linearly with the impurity concentration. The spin Hall angle of CuIr, (2.1±0.6)(2.1 \pm 0.6)% throughout the concentration range between 1% and 12%, is practically independent of temperature. These results represent a clear example of predominant skew scattering extrinsic contribution to the spin Hall effect in a nonmagnetic alloy.Comment: 5 pages, 4 figure

    Indication of intrinsic spin Hall effect in 4d and 5d transition metals

    Full text link
    We have investigated spin Hall effects in 4dd and 5dd transition metals, Nb, Ta, Mo, Pd and Pt, by incorporating the spin absorption method in the lateral spin valve structure; where large spin current preferably relaxes into the transition metals, exhibiting strong spin-orbit interactions. Thereby nonlocal spin valve measurements enable us to evaluate their spin Hall conductivities. The sign of the spin Hall conductivity changes systematically depending on the number of dd electrons. This tendency is in good agreement with the recent theoretical calculation based on the intrinsic spin Hall effect.Comment: 5 pages, 4 figure

    Construction of School Temperature Measurement System with Sensor Network

    Full text link

    Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges

    Full text link
    We measured the electronic local density of states (LDOS) of graphite surfaces near monoatomic step edges, which consist of either the zigzag or armchair edge, with the scanning tunneling microscopy (STM) and spectroscopy (STS) techniques. The STM data reveal that the (3×3)R30(\sqrt{3} \times \sqrt{3}) R 30^{\circ} and honeycomb superstructures coexist over a length scale of 3-4 nm from both the edges. By comparing with density-functional derived nonorthogonal tight-binding calculations, we show that the coexistence is due to a slight admixing of the two types of edges at the graphite surfaces. In the STS measurements, a clear peak in the LDOS at negative bias voltages from -100 to -20 mV was observed near the zigzag edges, while such a peak was not observed near the armchair edges. We concluded that this peak corresponds to the graphite "edge state" theoretically predicted by Fujita \textit{et al.} [J. Phys. Soc. Jpn. {\bf 65}, 1920 (1996)] with a tight-binding model for graphene ribbons. The existence of the edge state only at the zigzag type edge was also confirmed by our first-principles calculations with different edge terminations.Comment: 20 pages, 11 figure

    Imbalance of endogenous prostanoids in moderate-to-severe asthma

    No full text
    BACKGROUND: Inhalation studies suggested "protective" roles of exogenous prostaglandin E2, but the clinical relevance of endogenous prostanoids in asthma is poorly known. The objective of this study is to measure sputum levels of prostanoids in asthmatic patients to correlate with clinical indices. METHODS: Mild (n = 41) or moderate-to-severe (19) asthmatics and 27 normal controls were examined for pulmonary function (FEV1 and mid-forced expiratory flow), sputum cell differentials, and sputum levels of prostaglandins D2, E2, F2α, and thromboxane B2 measured by sandwich enzyme immunoassay. RESULTS: Each prostanoid level did not differ among the three groups. Sputum number of bronchial epithelial cells was greater in moderate-to-severe asthmatics than in the other two groups, suggesting epithelial desquamation. Levels of prostaglandin F2α, D2, and thromboxane B2 positively correlated with the severity of airflow obstruction in the 60 asthmatic patients, whereas prostaglandin E2 levels were unrelated to pulmonary function. The ratio of combined "contractile" prostanoids (prostaglandin D2/prostaglandin F2α/thromboxane B2) to prostaglandin E2 was 2.5-fold greater in moderate-to-severe asthmatics than in controls (p = 0.001) or in mild asthmatics (p = 0.0002) but did not differ between the latter two groups. In the two asthmatic groups combined, this ratio positively correlated with the sputum number of epithelial cells. The combined "contractile" prostanoids levels positively correlated with prostaglandin E2 levels in controls and in mild asthmatics but not in moderate-to-severe asthmatics. CONCLUSIONS: An imbalance in production, breakdown, or both between prostaglandin E2 and other prostanoids possibly due to epithelial damage may be involved in the pathogenesis of moderate-to-severe asthma
    corecore