216 research outputs found

    Auroral Ionospheric F Region Density Cavity Formation and Evolution: MICA Campaign Results

    Get PDF
    Auroral ionospheric F region density depletions observed by PFISR (Poker Flat Incoherent Scatter Radar) during the MICA (Magnetosphere‐Ionosphere Coupling in the AlfvĂ©n Resonator) sounding rocket campaign are critically examined alongside complementary numerical simulations. Particular processes of interest include cavity formation due to intense frictional heating and Pedersen drifts, evolution in the presence of structured precipitation, and refilling due to impact ionization and downflows. Our analysis uses an ionospheric fluid model which solves conservation of mass, momentum, and energy equations for all major ionospheric species. These fluid equations are coupled to an electrostatic current continuity equation to self‐consistently describe auroral electric fields. Energetic electron precipitation inputs for the model are specified by inverting optical data, and electric field boundary conditions are obtained from direct PFISR measurements. Thus, the model is driven in as realistic a manner as possible. Both incoherent scatter radar (ISR) data and simulations indicate that the conversion of the F region plasma to molecular ions and subsequent recombination is the dominant process contributing to the formation of the observed cavities, all of which occur in conjunction with electric fields exceeding ∌90 mV/m. Furthermore, the cavities often persist several minutes past the point when the frictional heating stops. Impact ionization and field‐aligned plasma flows modulate the cavity depth in a significant way but are of secondary importance to the molecular generation process. Informal comparisons of the ISR density and temperature fits to the model verify that the simulations reproduce most of the observed cavity features to a reasonable level of detail

    Simultaneously Targeting Myofibroblast Contractility and Extracellular Matrix CrossĂą Linking as a Therapeutic Concept in Airway Fibrosis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136664/1/ajt14103-sup-0002-FigureS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136664/2/ajt14103-sup-0003-FigureS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136664/3/ajt14103.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136664/4/ajt14103_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136664/5/ajt14103-sup-0001-FigureS1.pd

    Magnetic aspect sensitivity of high‐latitude E region irregularities measured by the RAX‐2 CubeSat

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106761/1/jgra50801.pd

    Radar detection of a localized 1.4 Hz pulsation in auroral plasma, simultaneous with pulsating optical emissions, during a substorm

    Get PDF
    Many pulsating phenomena are associated with the auroral substorm. It has been considered that some of these phenomena involve kilometer-scale Alfvén waves coupling the magnetosphere and ionosphere. Electric field oscillations at the altitude of the ionosphere are a signature of such wave activity that could distinguish it from other sources of auroral particle precipitation, which may be simply tracers of magnetospheric activity. Therefore, a ground based diagnostic of kilometer-scale oscillating electric fields would be a valuable tool in the study of pulsations and the auroral substorm. In this study we attempt to develop such a tool in the Poker Flat incoherent scatter radar (PFISR). The central result is a statistically significant detection of a 1.4 Hz electric field oscillation associated with a similar oscillating optical emission, during the recovery phase of a substorm. The optical emissions also contain a bright, lower frequency (0.2 Hz) pulsation that does not show up in the radar backscatter. The fact that higher frequency oscillations are detected by the radar, whereas the bright, lower frequency optical pulsation is not detected by the radar, serves to strengthen a theoretical argument that the radar is sensitive to oscillating electric fields, but not to oscillating particle precipitation. Although it is difficult to make conclusions as to the physical mechanism, we do not find evidence for a plane-wave-like Alfvén wave; the detected structure is evident in only two of five adjacent beams. We emphasize that this is a new application for ISR, and that corroborating results are needed

    “Mental health day” sickness absence amongst nurses and midwives: Workplace, workforce, psychosocial and health characteristics

    Get PDF
    Aim To examine the workforce, workplace, psychosocial and health characteristics of nurses and midwives in relation to their reported use of sickness absence described as ‘mental health days’. Background The occupational stress associated with the nursing profession is increasingly recognized and nurse/midwifery absenteeism is a significant global problem. Taking a ‘mental health day’ as sickness absence is a common phenomenon in Australian health care. No previous studies have empirically explored the characteristics of nurses and midwives using such sickness absence. Design Online cross-sectional survey. Methods Survey comprising validated tools and questions on workplace and health characteristics was distributed to nurses and midwives in New South Wales, Australia, between May 2014 - February 2015. Sample characteristics were reported using descriptive statistics. Factors independently predictive of ‘mental health day’ reportage were determined using logistic regression. Results Fifty-four percentage of the n = 5041 nurse and midwife respondents took ‘mental health days’. Those affected were significantly more likely to be at younger ages, working shifts with less time sitting at work; to report workplace abuse and plans to leave; having been admitted to hospital in previous 12 months; to be current smokers; to report mental health problems, accomplishing less due to emotional problems and current psychotropic medication use. Conclusion Specific characteristics of nurses and midwives who report taking ‘mental health day’ sickness absence offer healthcare administrators and managers opportunities for early identification and intervention with workplace measures and support frameworks to promote well-being, health promotion and safety

    Comparing VHF coherent scatter from the radar aurora with incoherent scatter and all-sky auroral imagery

    Get PDF
    VHF coherent scatter radar observations of an auroral substorm over Alaska are analyzed in the context of multibeam incoherent scatter plasma density and drifts data and green-line all-sky optical imagery. Coherent scatter arises from Farley Buneman waves which are excited in theEregion whenever the convection electric field is greater than about 20 mV/m. Aperture synthesis radar imaging and other aspects of the methodology facilitate the precise spatial registration of the coherent scatter with coincident optical and incoherent scatter radar measurements. Discrete auroral arcs were found to separate diffuse regions of coherent backscatter and, sometimes, to align with the boundaries of those regions. At other times, auroral arcs and torches lined up adjacent to discrete, structured regions or radar backscatter. Drastic variations in the Doppler shifts of the coherent scatter from one side of the auroral forms to the other suggest the presence of field-aligned currents. An empirical formula based on previous studies but adapted to account approximately for the effects of wave turning was used to estimate the convection electric field from the moments of the coherent scatter Doppler spectra. Line-of-sightF region plasma drift measurements from the Poker Flat Incoherent Scatter Radar (PFISR) were found to be in reasonable agreement with these convection field estimates. Reasons why the empirical formulas may be expected to hold are discussed

    Ionospheric ion temperature climate and upper atmospheric long-term cooling

    Get PDF
    It is now recognized that Earth's upper atmosphere is experiencing a long-term cooling over the past several solar cycles. The potential impact of the cooling on societal activities is significant, but a fundamental scientific question exists regarding the drivers of the cooling. New observations and analyses provide crucial advances in our knowledge of these important processes. We investigate ionospheric ion temperature climatology and long-term trends using up-to-date large and consistent ground-based data sets as measured by multiple incoherent scatter radars (ISRs). The very comprehensive view provided by these unique observations of the upper atmospheric thermal status allows us to address drivers of strong cooling previously observed by ISRs. We use observations from two high-latitude sites at Sondrestrom (invariant latitude 73.2°N) from 1990 to 2015 and Chatanika/Poker Flat (invariant latitude 65.9°N) over the span of 1976–2015 (with a gap from 1983 to 2006). Results are compared to conditions at the midlatitude Millstone Hill site (invariant latitude 52.8°N) from 1968 to 2015. The aggregate radar observations have very comparable and consistent altitude dependence of long-term trends. In particular, the lower F region (<275 km) exhibits dayside cooling trends that are significantly higher (−3 to −1 K/yr at 250 km) than anticipated from model predictions given the anthropogenic increase of greenhouse gases. Above 275 km, cooling trends continue to increase in magnitude but values are strongly dependent on magnetic latitude, suggesting the presence of significant downward influences from nonneutral atmospheric processes.National Science Foundation (U.S.) (Awards AGS-1042569 and AGS-1343056

    PFISR observation of intense ion upflow fluxes associated with an SED during the 1 June 2013 geomagnetic storm

    Full text link
    The Earth’s ionosphere plays an important role in supplying plasma into the magnetosphere through ion upflow/outflow, particularly during periods of strong solar wind driving. An intense ion upflow flux event during the 1 June 2013 storm has been studied using observations from multiple instruments. When the open‐closed field line boundary (OCB) moved into the Poker Flat incoherent scatter radar (PFISR) field of view, divergent ion fluxes were observed by PFISR with intense upflow fluxes reaching ~1.9 × 1014 m−2 s−1 at ~600 km altitude. Both ion and electron temperatures increased significantly within the ion upflow, and thus, this event has been classified as a type 2 upflow. We discuss factors contributing to the high electron density and intense ion upflow fluxes, including plasma temperature effect and preconditioning by storm‐enhanced density (SED). Our analysis shows that the significantly enhanced electron temperature due to soft electron precipitation in the cusp can reduce the dissociative recombination rate of molecular ions above ~400 km and contributed to the density increase. In addition, this intense ion upflow flux event is preconditioned by the lifted F region ionosphere due to northwestward convection flows in the SED plume. During this event, the OCB and cusp were detected by DMSP between 15 and 16 magnetic local times, unusually duskward. Results from a global magnetohydrodynamics simulation using the Space Weather Modeling Framework have been used to provide a global context for this event. This case study provides a more comprehensive mechanism for the generation of intense ion upflow fluxes observed in association with SEDs.Key PointsA more comprehensive mechanism for the generation of intense ion upflow fluxes observed in association with SEDs has been providedNorthwestward convection flows lift the F region ionosphere within SED and provide seed population for intense ion upflow fluxesSignificantly elevated electron temperature reduces recombination rate contributing to density increasePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136519/1/jgra53328.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136519/2/jgra53328_am.pd
    • 

    corecore