215 research outputs found

    Inelastic Deformation of Metal Matrix Composites

    Get PDF
    The deformation mechanisms of a Ti 15-3/SCS6 (SiC fiber) metal matrix composite (MMC) were investigated using a combination of mechanical measurements and microstructural analysis. The objectives were to evaluate the contributions of plasticity and damage to the overall inelastic response, and to confirm the mechanisms by rigorous microstructural evaluations. The results of room temperature experiments performed on 0 degree and 90 degree systems primarily are reported in this report. Results of experiments performed on other laminate systems and at high temperatures will be provided in a forthcoming report. Inelastic deformation of the 0 degree MMC (fibers parallel to load direction) was dominated by the plasticity of the matrix. In contrast, inelastic deformations of the 90 degree composite (fibers perpendicular to loading direction) occurred by both damage and plasticity. The predictions of a continuum elastic plastic model were compared with experimental data. The model was adequate for predicting the 0 degree response; however, it was inadequate for predicting the 90 degree response largely because it neglected damage. The importance of validating constitutive models using a combination of mechanical measurements and microstructural analysis is pointed out. The deformation mechanisms, and the likely sequence of events associated with the inelastic deformation of MMCs, are indicated in this paper

    Inelastic deformation of metal matrix composites: Plasticity and damage mechanisms, part 2

    Get PDF
    The inelastic deformation mechanisms for the SiC (SCS-6)/Ti-15-3 system were studied at 538 C (1000 F) using a combination of mechanical measurements and detailed microstructural examinations. The objectives were to evaluate the contributions of plasticity and damage to the overall MMC response, and to compare the room temperature and elevated temperature deformation behaviors. Four different laminates were studied: (0)8, (90)8,(+ or -45)2s, and (0/90)2s, with the primary emphasis on the unidirectional (0)8, and (90)8 systems. The elevated temperature responses were similar to those at room temperature, involving a two-stage elastic-plastic type of response for the (0)8 system, and a characteristic three-stage deformation response for the (90)8 and (+ or -45)2s systems. The primary effects of elevated temperatures included: (1) reduction in the 'yield' and failure strengths; (2) plasticity through diffused slip rather than concentrated planar slip (which occurred at room temperature); and (3) time-dependent deformation. The inelastic deformation mechanism for the (0)8 MMC was dominated by plasticity at both temperatures. For the (90)8 and (+ or -45)2s MMCs, a combination of damage and plasticity contributed to the deformation at both temperatures

    Drastic Reduction of Shot Noise in Semiconductor Superlattices

    Full text link
    We have found experimentally that the shot noise of the tunneling current II through an undoped semiconductor superlattice is reduced with respect to the Poissonian noise value 2eI2eI, and that the noise approaches 1/3 of that value in superlattices whose quantum wells are strongly coupled. On the other hand, when the coupling is weak or when a strong electric field is applied to the superlattice the noise becomes Poissonian. Although our results are qualitatively consistent with existing theories for one-dimensional mulitple barriers, the theories cannot account for the dependence of the noise on superlattice parameters that we have observed.Comment: 4 Pages, 3Figure

    Drag Reduction Using Graphene in Viscous Laminar Flow with Water and Isopropanol

    Get PDF
    America has over 2.6 million miles of pipeline for the transportation of energy products, such as liquid petroleum and natural gas. Friction is one of the main sources for energy dissipation at liquid/solid interfaces that limits the transport of a fluid through a cylindrical pipe or tube. In order to make these pipelines more efficient and enhance the flow of these materials, it is necessary to find a coating material that reduces the frictional drag. The ideal material would reduce the drag between the fluid and solid interface while being easily synthesizable on the surface. The goal of this project is to demonstrate ultra-low drag between the liquid/solid interface by exploiting the reduced kinetic friction of graphene, an allotrope of carbon in the form of a honey-comb lattice structure. Graphene has very weak van der Waals forces between layers and very weak out-of-plane bonding, which causes ultra-low kinetic friction and would lower the drag between a fluid and its container. We have successfully synthesized monolayer graphene on high copper pipe using chemical vapor deposition and investigated the fluid flow of two test liquids, water and isopropanol, through those pipes. We have not found consistent results that suggest a reduction or increase in drag in our graphene-coated samples when compared to the uncoated control pipes. Future research will provide the knowledge necessary to synthesize these materials and apply them on an industrial scale

    Isothermal fatigue mechanisms in Ti-based metal matrix composites

    Get PDF
    Stress-controlled isothermal fatigue experiments were performed at room temperature (RT) and 548 C (in argon) on (0)8 SCS6/Ti 15-3 metal matrix composites (MMC's) with 15 and 41 volume percent SCS6 (SiC) fibers. The primary objectives were to evaluate the mechanical responses, and to obtain a clear understanding of the damage mechanisms leading to failure of the MMC's. The mechanical data indicated that strain ranges attained fairly constant values in the stress-controlled experiments at both RT and 538 C, and remained so for more than 85 percent of life. The fatigue data for MMC's with different volume fraction fibers showed that MMC life was controlled by the imposed strain range rather than the stress range. At RT, and at low and intermediate strain ranges, the dominant fatigue mechanism was matrix fatigue, and this was confirmed metallurgically from fractographic evidence as well as from observations of channel type dislocation structures in the matrix of fatigued MMC specimens. Reaction-zone cracks acted as important crack initiating sites at RT, with their role being to facilitate slip band formation and consequent matrix crack initiation through classical fatigue mechanisms. MMC life agreed with matrix life at the lower strain ranges, but was smaller than matrix life at higher strain ranges. Unlike the case of monotonic deformation, debonding damage was another major damage mechanism during fatigue at RT, and it increased for higher strain ranges. At high strain ranges at RT, fractography and metallography showed an absence of matrix cracks, but long lengths of debonds in the outer layers of the SCS6 fibers. Such debonding and consequent rubbing during fatigue is believed to have caused fiber damage and their failure at high strain ranges. Thus, whereas life was matrix dominated at low and intermediate strain ranges, it was fiber dominated at high strain ranges. At 538 C, the mean stain constantly increased (ratchetting) with the number of cycles. At high strain ranges, such ratchetting led to overload failure of the fibers, and debonding of the type at RT was very small. At intermediate strain ranges, fractography showed large areas of matrix cracks. However, in spite of this matrix dominated mechanism, the MMC life at elevated temperatures was significantly less than the matrix fatigue life at all strain ranges. The reason for this difference is still unclear, although metallographic and fractographic evidences suggest that internal crack initiation sites at Mo-ribbons and reaction-zone cracks may have played a critical role, with the former tending to dominate

    In-phase thermomechanical fatigue mechanisms in an unidirectional SCS-6/Ti 15-3 MMC

    Get PDF
    The objective of this investigation was to identify the inelastic deformation and damage mechanisms under in-phase (IP) thermomechanical fatigue (TMF) in a unidirectional SCS-6/Ti 15-3 metal matrix composite (MMC). Load-controlled IP TMF tests were conducted at 300-538 C at various stress ranges in high-purity argon. A major emphasis of this work was to identify damage mechanism well before final fracture of specimens, rather than to generate life diagrams, to aid development of a realistic deformation/damage and life model

    Inelastic deformation mechanisms in SCS-6/Ti 15-3 MMC lamina under compression

    Get PDF
    An investigation was undertaken to study the inelastic deformation mechanisms in (0)(sub 8) and (90)(sub 8) Ti 15-3/SCS-6 lamina subjected to pure compression. Monotonic tests were conducted at room temperature (RT), 538 C and 650 C. Results indicate that mechanical response and deformation characteristics were different in monotonic tension and compression loading whereas some of those differences could be attributed to residual stress effects. There were other differences because of changes in damage and failure modes. The inelastic deformation in the (0)(sub 8) lamina under compression was controlled primarily by matrix plasticity, although some evidence of fiber-matrix debonding was observed. Failure of the specimen in compression was due to fiber buckling in a macroscopic shear zone (the failure plane). The inelastic deformation mechanisms under compression in (90)(sub 8) lamina were controlled by radial fiber fracture, matrix plasticity, and fiber-matrix debonding. The radial fiber fracture was a new damage mode observed for MMC's. Constitutive response was predicted for both the (0)(sub 8) and (90)(sub 8) laminae, using AGLPLY, METCAN, and Battelle's Unit Cell FEA model. Results from the analyses were encouraging
    • …
    corecore