287 research outputs found

    Manifestation of spin-charge separation in the dynamic dielectric response of one--dimensional Sr2CuO3

    Get PDF
    We have determined the dynamical dielectric response of a one-dimensional, correlated insulator by carrying out electron energy-loss spectroscopy on Sr2CuO3 single crystals. The observed momentum and energy dependence of the low-energy features, which correspond to collective transitions across the gap, are well described by an extended one-band Hubbard model with moderate nearest neighbor Coulomb interaction strength. An exciton-like peak appears with increasing momentum transfer. These observations provide experimental evidence for spin-charge separation in the relevant excitations of this compound, as theoretically expected for the one-dimensional Hubbard model.Comment: RevTex, 4 pages+2 figures, to appear in PRL (July 13

    The dynamics of a hole in a CuO_4 plaquette: electron energy-loss spectroscopy of Li_2CuO_2

    Get PDF
    We have measured the energy and momentum dependent loss function of Li_2CuO_2 single crystals by means of electron energy-loss spectroscopy in transmission. Using the same values for the model parameters, the low-energy features of the spectrum as well as published Cu 2p_(3/2) x-ray photoemission data of Li_2CuO_2 are well described by a cluster model that consists of a single CuO_4 plaquette only. This demonstrates that charge excitations in Li_2CuO_2 are strongly localized.Comment: 5 pages, 5 figure

    Mimicking the Human Tympanic Membrane: The Significance of Scaffold Geometry

    Get PDF
    The human tympanic membrane (TM) captures sound waves from the environment and transforms them into mechanical motion. The successful transmission of these acoustic vibrations is attributed to the unique architecture of the TM. However, a limited knowledge is available on the contribution of its discrete anatomical features, which is important for fabricating functional TM replacements. This work synergizes theoretical and experimental approaches toward understanding the significance of geometry in tissue-engineered TM scaffolds. Three test designs along with a plain control are chosen to decouple some of the dominant structural elements, such as the radial and circumferential alignment of the collagen fibrils. In silico models suggest a geometrical dependency of their mechanical and acoustical responses, where the presence of radially aligned fibers is observed to have a more prominent effect compared to their circumferential counterparts. Following which, a hybrid fabrication strategy combining electrospinning and additive manufacturing has been optimized to manufacture biomimetic scaffolds within the dimensions of the native TM. The experimental characterizations conducted using macroindentation and laser Doppler vibrometry corroborate the computational findings. Finally, biological studies with human dermal fibroblasts and human mesenchymal stromal cells reveal a favorable influence of scaffold hierarchy on cellular alignment and subsequent collagen deposition

    Time- and vector-resolved magneto-optical Kerr effect measurements of large angle precessional reorientation in a 2×2 μ m2 ferromagnet

    Get PDF
    Copyright © 2009 American Institute of PhysicsThe precessional dynamics of a 2×2 μm2 CoFe/NiFe (4.6 nm) element stimulated by an in-plane pulsed magnetic field have been investigated using time- and vector-resolved Kerr microscopy measurements and micromagnetic simulations. The time-resolved signals were normalized to in-plane hysteresis loops obtained from the patterned material, and suggest that the magnetization reorients through an angle of 100°±10°. The simulations reveal that only the magnetization of the center region undergoes large angle reorientation, while the canted magnetization at the edges of the element remains pinned. An enhanced Gilbert damping parameter of 0.1 was required to reproduce the experimentally observed Kerr signals

    Methods and reference data for middle ear transfer functions

    Full text link
    Human temporal bone specimens are used in experiments measuring the sound transfer of the middle ear, which is the standard method used in the development of active and passive middle ear implants. Statistical analyses of these experiments usually require that the TB samples are representative of the population of non-pathological middle ears. Specifically, this means that the specimens must be mechanically well-characterized. We present an in-depth statistical analysis of 478 data sets of middle ear transfer functions (METFs) from different laboratories. The data sets are preprocessed and various contributions to the variance of the data are evaluated. We then derive a statistical range as a reference against which individual METF measurements may be validated. The range is calculated as the two-sided 95% tolerance interval at audiological frequencies. In addition, the mean and 95% confidence interval of the mean are given as references for assessing the validity of a sample group. Finally, we provide a suggested procedure for measuring METFs using the methods described herein

    Resonant inelastic x-ray scattering in one-dimensional copper oxides

    Full text link
    The Cu K-edge resonant inelastic x-ray scattering (RIXS) spectrum in one-dimensional insulating cuprates is theoretically examined by using the exact diagonalization technique for the extended one-dimensional Hubbard model with nearest neighbor Coulomb interaction. We find the following characteristic features that can be detectable by RIXS experiments: (i) The spectrum with large momentum transfer indicates the formation of excitons, i.e., bound states of holon and doublon. (ii) The spectrum with small momentum transfer depends on the incident photon energy. We propose that the RIXS provides a unique opportunity to study the upper Hubbard band in one-dimensional cuprates.Comment: 3 pages with 4 figures, minor changes, to appear in Phys.Rev.

    Nonlinear Optical Response in two-dimensional Mott Insulators

    Full text link
    We study the third-order nonlinear optical susceptibility χ(3)\chi^{(3)} and photoexcited states of two-dimensional (2D) Mott insulators by using an effective model in the strong-coupling limit of a half-filled Hubbard model. In the numerically exact diagonalization calculations on finite-size clusters, we find that the coupling of charge and spin degrees of freedom plays a crucial role in the distribution of the dipole-allowed states with odd parity and the dipole-forbidden states with even parity in the photoexcited states. This is in contrast with the photoexcited states in one dimension, where the charge and spin degrees of freedom are decoupled. In the third-harmonic generation (THG) spectrum, main contribution is found to come from the process of three-photon resonance associated with the odd-parity states. As a result, the two-photon resonance process is less pronounced in the THG spectrum. The calculated THG spectrum is compared with recent experimental data. We also find that χ(3)\chi^{(3)} with cross-polarized configuration of pump and probe photons shows spectral distributions similar to χ(3)\chi^{(3)} with co-polarized configuration, although the weight is small. These findings will help the analyses of the experimental data of χ(3)\chi^{(3)} in the 2D Mott insulators.Comment: 9 pages,5 figures,RevTeX

    Hole distribution for (Sr,Ca,Y,La)_14 Cu_24 O_41 ladder compounds studied by x-ray absorption spectroscopy

    Get PDF
    The unoccupied electronic structure for the Sr_14Cu_24O_41 family of two-leg ladder compounds was investigated for different partial substitutions of Sr^2+ by Ca^2+, leaving the nominal hole count constant, and by Y^3+ or La^3+, reducing the nominal hole count from its full value of 6 per formula unit. Using polarization-dependent x-ray absorption spectroscopy on single crystals, hole states on both the chain and ladder sites could be studied. While for intermediate hole counts all holes reside on O sites of the chains, a partial hole occupation on the ladder sites in orbitals oriented along the legs is observed for the fully doped compound Sr_14Cu_24O_41. On substitution of Ca for Sr orbitals within the ladder planes but perpendicular to the legs receive some hole occupation as well.Comment: 10 pages RevTeX style with 7 embedded figures + 1 table; accepted by Phys. Rev.

    Nonlinear optical response and spin-charge separation in one-dimensional Mott insulators

    Full text link
    We theoretically study the nonlinear optical response and photoexcited states of the Mott insulators. The nonlinear optical susceptibility \chi^(3) is calculated by using the exact diagonalization technique on small clusters. From the systematic study of the dependence of \chi^(3) on dimensionality, we find that the spin-charge separation plays a crucial role in enhancing \chi^(3) in the one-dimensional (1D) Mott insulators. Based on this result, we propose a holon-doublon model, which describes the nonlinear response in the 1D Mott insulators. These findings show that the spin-charge separation will become a key concept of optoelectronic devices.Comment: 5 pages with 3 figures, to appear in PRB RC, 15 August 200
    • …
    corecore