256,931 research outputs found

    Optically-Induced Polarons in Bose-Einstein Condensates: Monitoring Composite Quasiparticle Decay

    Full text link
    Nonresonant light-scattering off atomic Bose-Einstein condensates (BECs) is predicted to give rise to hitherto unexplored composite quasiparticles: unstable polarons, i.e., local ``impurities'' dressed by virtual phonons. Optical monitoring of their spontaneous decay can display either Zeno or anti-Zeno deviations from the Golden Rule, and thereby probe the temporal correlations of elementary excitations in BECs.Comment: 4 pages, 3 figure

    Lattice vibrations and structural instability in Cesium near the cubic to tetragonal transition

    Full text link
    Under pressure cesium undergoes a transition from a high-pressure fcc phase (Cs-II) to a collapsed fcc phase (Cs-III) near 4.2GPa. At 4.4GPa there follows a transition to the tetragonal Cs-IV phase. In order to investigate the lattice vibrations in the fcc phase and seek a possible dynamical instability of the lattice, the phonon spectra of fcc-Cs at volumes near the III-IV transition are calculated using Savrasov's density functional linear-response LMTO method. Compared with quasiharmonic model calculations including non-central interatomic forces up to second neighbours, at the volume V/V0=0.44V/V_0= 0.44 (V0V_0 is the experimental volume of bcc-Cs with a0a_0=6.048{\AA}), the linear-response calculations show soft intermediate wavelength T[11ˉ0][ξξ0]T_{[1\bar{1}0]}[{\xi}{\xi}0] phonons. Similar softening is also observed for short wavelength L[ξξξ]L[\xi\xi\xi] and L[00ξ]L[00\xi] phonons and intermediate wavelength L[ξξξ]L[\xi\xi\xi] phonons. The Born-von K\'{a}rm\'{a}n analysis of dispersion curves indicates that the interplanar force constants exhibit oscillating behaviours against plane spacing nn and the large softening of intermediate wavelength T[11ˉ0][ξξ0]T_{[1\bar{1}0]}[{\xi}{\xi}0] phonons results from a negative (110)-interplanar force-constant Φn=2\Phi_{n=2}. The frequencies of the T[11ˉ0][ξξ0]T_{[1\bar{1}0]}[{\xi}{\xi}0] phonons with ξ\xi around 1/3 become imaginary and the fcc structure becomes dynamically unstable for volumes below 0.41V00.41V_0. It is suggested that superstructures corresponding to the q≠0\mathbf{q}{\neq}0 soft mode should be present as a precursor of tetragonal Cs-IV structure.Comment: 12 pages, 5 figure

    Chiral Dynamics of Deeply Bound Pionic Atoms

    Get PDF
    We present and discuss a systematic calculation, based on two-loop chiral perturbation theory, of the pion-nuclear s-wave optical potential. A proper treatment of the explicit energy dependence of the off-shell pion self-energy together with (electromagnetic) gauge invariance of the Klein-Gordon equation turns out to be crucial. Accurate data for the binding energies and widths of the 1s and 2p levels in pionic ^{205}Pb and ^{207}Pb are well reproduced, and the notorious "missing repulsion" in the pion-nuclear s-wave optical potential is accounted for. The connection with the in-medium change of the pion decay constant is clarified.Comment: preprint ECT*-02-16, 4 pages, 3 figure

    Hadron Production in Neutrino-Nucleon Interactions at High Energies

    Get PDF
    The multi-particle production at high energy neutrino- nucleon collisions are investigated through the analysis of the data of the experiment CERN-WA-025 at neutrino energy less than 260GeV and the experiments FNAL-616 and FNAL-701 at energy range 120-250 GeV. The general features of these experiments are used as base to build a hypothetical model that views the reaction by a Feynman diagram of two vertices. The first of which concerns the weak interaction between the neutrino and the quark constituents of the nucleon. At the second vertex, a strong color field is assumed to play the role of particle production, which depend on the momentum transferred from the first vertex. The wave function of the nucleon quarks are determined using the variation method and relevant boundary conditions are applied to calculate the deep inelastic cross sections of the virtual diagram.Comment: 6 pages PDF forma

    Do stringy corrections stabilize coloured black holes?

    Get PDF
    We consider hairy black hole solutions of Einstein-Yang-Mills-Dilaton theory, coupled to a Gauss-Bonnet curvature term, and we study their stability under small, spacetime-dependent perturbations. We demonstrate that the stringy corrections do not remove the sphaleronic instabilities of the coloured black holes with the number of unstable modes being equal to the number of nodes of the background gauge function. In the gravitational sector, and in the limit of an infinitely large horizon, the coloured black holes are also found to be unstable. Similar behaviour is exhibited by the magnetically charged black holes while the bulk of the neutral black holes are proven to be stable under small, gauge-dependent perturbations. Finally, the electrically charged black holes are found to be characterized only by the existence of a gravitational sector of perturbations. As in the case of neutral black holes, we demonstrate that for the bulk of electrically charged black holes no unstable modes arise in this sector.Comment: 17 pages, Revtex, comments and a reference added, version to appear in Physical Review

    Spin-dependent transport in p+-CdBxF2-x - n-CdF2 planar structures

    Full text link
    The CV measurements and tunneling spectroscopy are used to study the ballistic transport of the spin-polarized holes by varying the value of the Rashba spin-orbit interaction (SOI) in the p-type quantum well prepared on the surface of the n-CdF2 bulk crystal. The findings of the hole conductance oscillations in the plane of the p-type quantum well that are due to the variations of the Rashba SOI are shown to be evidence of the spin transistor effect, with the amplitude of the oscillations close to e2/h.Comment: 5 pages, 6 figure

    Particle Survival and Polydispersity in Aggregation

    Full text link
    We study the probability, PS(t)P_S(t), of a cluster to remain intact in one-dimensional cluster-cluster aggregation when the cluster diffusion coefficient scales with size as D(s)∼sγD(s) \sim s^\gamma. PS(t)P_S(t) exhibits a stretched exponential decay for γ<0\gamma < 0 and the power-laws t−3/2t^{-3/2} for γ=0\gamma=0, and t−2/(2−γ)t^{-2/(2-\gamma)} for 0<γ<20<\gamma<2. A random walk picture explains the discontinuous and non-monotonic behavior of the exponent. The decay of PS(t)P_S(t) determines the polydispersity exponent, τ\tau, which describes the size distribution for small clusters. Surprisingly, τ(γ)\tau(\gamma) is a constant τ=0\tau = 0 for 0<γ<20<\gamma<2.Comment: submitted to Europhysics Letter

    Cosmic String Wakes in Scalar-Tensor Gravities

    Full text link
    The formation and evolution of cosmic string wakes in the framework of a scalar-tensor gravity are investigated in this work. We consider a simple model in which cold dark matter flows past an ordinary string and we treat this motion in the Zel'dovich approximation. We make a comaprison between our results and previous results obtained in the context of General Relativity. We propose a mechanism in which the contribution of the scalar field to the evolution of the wakes may lead to a cosmological observation.Comment: Replaced version to be published in the Classical and Quantum Gravit

    Phase structure of matrix quantum mechanics at finite temperature

    Full text link
    We study matrix quantum mechanics at finite temperature by Monte Carlo simulation. The model is obtained by dimensionally reducing 10d U(N) pure Yang-Mills theory to 1d. Following Aharony et al., one can view the same model as describing the high temperature regime of (1+1)d U(N) super Yang-Mills theory on a circle. In this interpretation an analog of the deconfinement transition was conjectured to be a continuation of the black-hole/black-string transition in the dual gravity theory. Our detailed analysis in the critical regime up to N=32 suggests the existence of the non-uniform phase, in which the eigenvalue distribution of the holonomy matrix is non-uniform but gapless. The transition to the gapped phase is of second order. The internal energy is constant (giving the ground state energy) in the uniform phase, and rises quadratically in the non-uniform phase, which implies that the transition between these two phases is of third order.Comment: 17 pages, 9 figures, (v2) refined arguments in section 3 ; reference adde
    • …
    corecore