We study matrix quantum mechanics at finite temperature by Monte Carlo
simulation. The model is obtained by dimensionally reducing 10d U(N) pure
Yang-Mills theory to 1d. Following Aharony et al., one can view the same model
as describing the high temperature regime of (1+1)d U(N) super Yang-Mills
theory on a circle. In this interpretation an analog of the deconfinement
transition was conjectured to be a continuation of the black-hole/black-string
transition in the dual gravity theory. Our detailed analysis in the critical
regime up to N=32 suggests the existence of the non-uniform phase, in which the
eigenvalue distribution of the holonomy matrix is non-uniform but gapless. The
transition to the gapped phase is of second order. The internal energy is
constant (giving the ground state energy) in the uniform phase, and rises
quadratically in the non-uniform phase, which implies that the transition
between these two phases is of third order.Comment: 17 pages, 9 figures, (v2) refined arguments in section 3 ; reference
adde