106 research outputs found
Seal and Sea lion Whiskers Detect Slips of Vortices Similar as Rats Sense Textures
Pinnipeds like seals and sea lions use their whiskers in hunting their prey in dark and turbid conditions. There is no theoretical model or a hypothesis to explain the interaction of whiskers with hydrodynamic fish trails. The present work provides insight into the mechanism behind the Strouhal frequency identification from a Von-Karman vortex street behind bluff bodies, similar to the inverted hydrodynamic fish trail. Flow over 3D printed sea lion head with integrated whiskers of similar geometrical and material properties was investigated when being exposed to vortex streets behind cylindrical bluff bodies. It is found that the whiskers respond to the vortices by a jerky motion similar to the stick-slip response of rat whiskers on different surface textures. The Strouhal frequency of the upstream wake is clearly decoded with the time-derivative of the whisker response rather than the displacement response, which increases the sensing efficiency in noisy environments. It is hypothesized from the work that the time derivative of the bending moment of the whiskers is the best physical variable, which can be used as the input to the neural system of the pinnipeds
Recommended from our members
A Deep-Learning Model for Underwater Position Sensing of a Wake's Source Using Artificial Seal Whiskers
Various marine animals possess the ability to track their preys and navigate dark aquatic environments using hydrodynamic sensing of the surrounding flow. In the present study, a deep-learning model is applied to a biomimetic sensor for underwater position detection of a wake-generating body. The sensor is composed of a bundle of spatially-distributed optical fibers that act as artificial seal-like whiskers and interact with the body's wake in the form of time-variant (bending) deflections. Supervised learning is employed to relate the vibrations of the artificial whiskers to the position of an upstream cylinder. The labeled training data are prepared based on the processing and reduction of the recorded bending responses of the artificial whiskers while the cylinder is placed at various locations. An iterative training algorithm is performed on two neural-network models while using the 10-fold cross-validation technique. The models are able to predict the coordinates of the cylinder in the two-dimensional (2D) space with a high degree of accuracy. The current implementation of the sensor can passively sense the wake generated by the cylinder at Re ≃ 6000 and estimate its position with an average error smaller than the characteristic diameter D of the cylinder and for inter-distances (in the water tunnel) up to 25-times D
COMPARATIVE AND PERFORMANCE ANALYSIS OF INDUCTION MOTOR WITH ANN CONTROLLER
A novel design of an adaptive artificial neural network technique (ANN) for controlling of the essential parameters, like as speed,  torque, flux, voltage, current, and power etc of the induction motor is presented in this paper. Induction motors are characterized by way of incredibly non-linear, complicated and time-various dynamics and inaccessibility of its states and outputs for measurements. Thus it can be considered as a challenging engineering difficulty in the industrial sector. A few of them, such as PI, fuzzy strategies, Fuzzy logic based controllers are regarded as capability candidates for such application for operating induction motor. Hence of which, the outcome of the controller is also random and high-rated results are probably not obtained. Resolution of the proper rule base application upon the drawback can be achieved by the use of an ANN controller, which becomes a built-in system of method for the manipulate purposes and yields results, which is the focus of this paper. Within the designed ANN scheme, neural community tactics are used to prefer an appropriate rule base, which is utilizing the back propagation algorithm. The simulation outcome provided on this paper is exhibit the effectiveness of the developed approach, which has acquired faster response time or settling times. Additionally, the procedure developed has got a huge number of benefits within the industrial sector will also be converted into a real time application making use of some interfacing cards
Transition Delay Using Biomimetic Fish Scale Arrays
Aquatic animals have developed effective strategies to reduce their body drag over a long period of time. In this work, the influence of the scales of fish on the laminar-to-turbulent transition in the boundary layer is investigated. Arrays of biomimetic fish scales in typical overlapping arrangements are placed on a flat plate in a low-turbulence laminar water channel. Transition to turbulence is triggered by controlled excitation of a Tollmien-Schlichting (TS) wave. It was found that the TS wave can be attenuated with scales on the plate which generate streamwise streaks. As a consequence, the transition location was substantially delayed in the downstream direction by 55% with respect to the uncontrolled reference case. This corresponds to a theoretical drag reduction of about 27%. We thus hypothesize that fish scales can stabilize the laminar boundary layer and prevent it from early transition, reducing friction drag. This technique can possibly be used for bio-inspired surfaces as a laminar flow control means
Carbon dioxide interaction with isolated imidazole or attached on gold clusters and surface: Competition between σ H-bond and π stacking interaction
Using first principle methodologies, we investigate the subtle competition between σ H-bond and π stacking interaction between CO 2 and imidazole either isolated, adsorbed on a gold cluster or adsorbed on a gold surface. These computations are performed using MP2 as well as dispersion corrected density functional theory (DFT) techniques. Our results show that the CO 2 interaction goes from π-type stacking into σ-type when CO 2 interacts with isolated imidazole and Au clusters or surface. The balance between both types of interactions is found when an imidazole is attached to a Au 20 gold cluster. Thus, the present study has great significance in understanding and controlling the structures of weakly-bound molecular systems and materials, where hydrogen bonding and van der Waals interactions are competing. The applications are in the fields of the control of CO 2 capture and scattering, catalysis and bio- and nanotechnologies. © 2014 the Partner Organisations
Fluid-Structure Interaction of Flexible Whisker-Type Beams and Its Implication for Flow Sensing by Pair-Wise Correlation
(1) Background: Sensing of critical events or flow signatures in nature often presents itself as a coupled interaction between a fluid and arrays of slender flexible beams, such a wind-hairs or whiskers. It is hypothesized that important information is gained in highly noisy environments by the inter-correlation within the array.
(2) Methods: The present study uses a model sea lion head with artificial whiskers in the form of slender beams (optical fibres), which are subjected to a mean flow with overlaid turbulent structures generated in the wake of a cylinder. Motion tracking of the array of fibres is used to analyse the correlation of the bending deformations of pairs of fibres.
(3) Results: Cross-correlation of the bending signal from tandem pairs of whiskers proves that the detection of vortices and their passage along the animals head is possible even in noisy environments. The underlying pattern, during passage of a vortex core, is a jerk-like response of the whiskers, which can be found at later arrival-times in similar form in the downstream whisker's response.
(4) Conclusion: Coherent vortical structures can be detected from cross-correlation of pairs of cantilever-beam like sensors even in highly turbulent flows. Such vortices carry important information within the environment, e.g. the underlying convection velocity. More importantly in nature, these vortices are characteristic elementary signals left by prey and predators. The present work can help to further develop flow, or critical event, sensory systems which can overcome high noise levels due to the proposed correlation principle
Flow turning effect and laminar control by the 3D curvature of leading edge serrations from owl wing
This work describes a novel mechanism of laminar flow control of a backward swept wing with a comb-like leading edge device. It is inspired by the leading-edge comb on owl feathers and the special design of its barbs, resembling a cascade of complex 3D-curved thin finlets. The details of the geometry of the barbs from an owl feather were used to design a generic model of the comb for experimental and numerical flow studies with the comb attached to the leading edge of a flat plate. Examination was carried out at different sweep angles, because life animal clearly show the backward sweep of the wing during gliding and flapping. The results demonstrate a flow turning effect in the boundary layer inboards, which extends along the chord over distances of multiples of the barb lengths. The inboard flow-turning effect described here, thus, counter-acts the outboard directed cross-span flow typically appearing for backward swept wings. From recent theoretical studies on a swept wing, such a way of turning the flow in the boundary layer is known to attenuate crossflow instabilities and delay transition. A comparison of the comb-induced cross-span velocity profiles with those proven to delay transition in theory shows excellent agreement, which supports the laminar flow control hypothesis. Thus, the observed effect is expected to delay transition in owl flight, contributing to a more silent flight
A systematic review of the effectiveness of docetaxel and mitoxantrone for the treatment of metastatic hormone-refractory prostate cancer
A systematic review was performed to evaluate the clinical effectiveness of docetaxel in combination with prednisolone (docetaxel is licensed in the UK for use in combination with prednisone or prednisolone for the treatment of patients with metastatic hormone-refractory prostate cancer. Prednisone is not used in the UK, but it is reasonable to use docetaxel plus prednisone data in this review of docetaxel plus prednisolone) for the treatment of metastatic hormone-refractory prostate cancer. A scoping search identified a trial of docetaxel plus prednisone vs mitoxantrone plus prednisone, but did not identify any trials comparing docetaxel plus prednisolone/prednisone with any other treatments. Therefore, we considered additional indirect evidence that would enable a comparison of docetaxel plus prednisolone/prednisone with other chemotherapy regimens and active supportive care. Systematic searching (upto April 2005) identified seven randomised controlled trials. One large well-conducted trial assessed docetaxel plus prednisone vs mitoxantrone plus prednisone; this showed statistically significant improvements with 3-weekly docetaxel in terms of overall survival, quality of life, pain response and PSA decline. Two other chemotherapy regimens that included docetaxel with estramustine also showed improved outcomes in comparison with mitoxantrone plus prednisone. Three trials that compared mitoxantrone plus corticosteroids with corticosteroids alone were identified and their results for overall survival combined, which showed very little difference between the two groups. The addition of clodronate to mitoxantrone plus prednisone showed no significant differences in comparison with mitoxantrone plus prednisone alone. The evidence suggests that chemotherapy regimens containing 3-weekly docetaxel are superior to mitoxantrone or corticosteroids alone
Scattering theory for Klein-Gordon equations with non-positive energy
We study the scattering theory for charged Klein-Gordon equations:
\{{array}{l} (\p_{t}- \i v(x))^{2}\phi(t,x) \epsilon^{2}(x,
D_{x})\phi(t,x)=0,[2mm] \phi(0, x)= f_{0}, [2mm] \i^{-1} \p_{t}\phi(0, x)=
f_{1}, {array}. where: \epsilon^{2}(x, D_{x})= \sum_{1\leq j, k\leq
n}(\p_{x_{j}} \i b_{j}(x))A^{jk}(x)(\p_{x_{k}} \i b_{k}(x))+ m^{2}(x),
describing a Klein-Gordon field minimally coupled to an external
electromagnetic field described by the electric potential and magnetic
potential . The flow of the Klein-Gordon equation preserves the
energy: h[f, f]:= \int_{\rr^{n}}\bar{f}_{1}(x) f_{1}(x)+
\bar{f}_{0}(x)\epsilon^{2}(x, D_{x})f_{0}(x) - \bar{f}_{0}(x) v^{2}(x) f_{0}(x)
\d x. We consider the situation when the energy is not positive. In this
case the flow cannot be written as a unitary group on a Hilbert space, and the
Klein-Gordon equation may have complex eigenfrequencies. Using the theory of
definitizable operators on Krein spaces and time-dependent methods, we prove
the existence and completeness of wave operators, both in the short- and
long-range cases. The range of the wave operators are characterized in terms of
the spectral theory of the generator, as in the usual Hilbert space case
The first microsolvation step for furans : new experiments and benchmarking strategies
The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight
- …