30 research outputs found
Influence of fibers on the dust dislodgement efficiency of bag filters
In recent years non-woven bag filters have been used in waste incinerators for the efficient collection of dust and removal of detrimental gas. However, dust collection efficiency decreases with time until the bag filters are no longer effective. Dust adhering to the fabric is a major determinant of bag filter life. In the present study a flat filter was used to study the relationship between various parameters of a bag filter structure and its dust dislodgement efficiency. The results confirm that fiber linear density, modulus of elasticity, and the form of the fiber cross-section of the felt can each affect the dust collection efficiency of a bag filter. Higher fiber linear density in a bag filter prevents dust from penetrating the filter, and this allows the dust to be more easily dislodged from the filter. Examination of various forms of fiber cross-section indicates that for the same fiber linear density the triangular form is better than the circular form. A lower Young's modulus allows the fiber to bend more easily and prevents the dust from penetrating the filter. Fiber linear density, fiber modulus of elasticity and form of the fiber cross-section are the variables affecting bag filter efficiency.ArticleTEXTILE RESEARCH JOURNAL. 84(7):764-771 (2014)journal articl
Adamtsl3 mediates DCC signaling to selectively promote GABAergic synapse function
The molecular code that controls synapse formation and maintenance in vivo has remained quite sparse. Here, we identify that the secreted protein Adamtsl3 functions as critical hippocampal synapse organizer acting through the transmembrane receptor DCC (deleted in colorectal cancer). Traditionally, DCC function has been associated with glutamatergic synaptogenesis and plasticity in response to Netrin-1 signaling. We demonstrate that early post-natal deletion of Adamtsl3 in neurons impairs DCC protein expression, causing reduced density of both glutamatergic and GABAergic synapses. Adult deletion of Adamtsl3 in either GABAergic or glutamatergic neurons does not interfere with DCC-Netrin-1 function at glutamatergic synapses but controls DCC signaling at GABAergic synapses. The Adamtsl3-DCC signaling unit is further essential for activity-dependent adaptations at GABAergic synapses, involving DCC phosphorylation and Src kinase activation. These findings might be particularly relevant for schizophrenia because genetic variants in Adamtsl3 and DCC have been independently linked with schizophrenia in patients
CERT1 mutations perturb human development by disrupting sphingolipid homeostasis
Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome
CERT1 mutations perturb human development by disrupting sphingolipid homeostasis
Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.This work was supported by the National Institute of Neurological Disorders and Stroke (NINDS), NIH (R01NS109858, to VAG); the Paul A. Marks Scholar Program at the Columbia University Vagelos College of Physicians and Surgeons (to VAG); a TIGER grant from the TAUB Institute at the Columbia Vagelos College of Physicians and Scientists (to VAG); the Swiss National Science Foundation (SNF 31003A-179371, to TH); the European Joint Program on Rare Diseases (EJP RD+SNF 32ER30-187505, to TH); the Swiss Cancer League (KFS-4999-02-2020, to GD); the EPFL institutional fund (to GD); the Kristian Gerhard Jebsen Foundation (to GD); the Swiss National Science Foundation (SNSF) (310030_184926, to GD); the Swiss Foundation for Research on Muscle Disease (FSRMM, to MAL); the Natural Science and Engineering Research Council of Canada (Discovery Grant 2020-04241, to JEB); the Italian Ministry of Health Young Investigator Grant (GR-2011-02347754, to EL); the Fondazione Istituto di Ricerca Pediatrica – Città della Speranza (18-04, to EL); the Wroclaw Medical University (SUB.E160.21.004, to RS); the National Science Centre, Poland (2017/27/B/NZ5/0222, to RS); Telethon Undiagnosed Diseases Program (TUDP) (GSP15001); the Temple Street Foundation/Children’s Health Foundation Ireland (RPAC 19-02, to IK); the Deutsche Forschungsgemeinschaft (DFG) (PO2366/2–1, to BP); the Instituto de Salud Carlos III, Spain (to ELM, EBS, and BMD); the National Natural Science Foundation of China (81871079 and 81730036, to HG and KX); and the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH (R01 DK115574, to SSC).The DEFIDIAG study is funded by grants from the French Ministry of Health in the framewok of the national French initiative for genomic medicine. The funders were not involved in the study design, data acquisition, analysis, or writing of the manuscript. Funding for the DECIPHER project was provided by Wellcome. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between Wellcome and the Department of Health, and the Wellcome Sanger Institute (grant number WT098051). The views expressed in this publication are those of the author(s) and not necessarily those of Wellcome or the Department of Health. The study has UK Research Ethics Committee approval (10/H0305/83, granted by the Cambridge South REC, and GEN/284/12, granted by the Republic of Ireland REC). The research team acknowledges the support of the National Institute for Health Research, through the Comprehensive Clinical Research Network.S
CERT1 mutations perturb human development by disrupting sphingolipid homeostasis
Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome
SPONTANEOUSLY RESOLVED MACROANEURYSM ASSOCIATED WITH A CONGENITAL ANOMALOUS RETINAL ARTERY
Late onset of subfoveal choroidal neovascularisation following cerebral radiotherapy
A report of choroidal neovascularisation (CNV) associated with radiation retinopathy. A 43-year-old Caucasian man presented with a 4-week history of sudden loss of central vision in the left eye, 8.5 years following radical radiotherapy for left tempero-parietal anaplastic astrocytoma. His visual acuity was 6/6 in the right eye and 6/60 in the left eye. Ophthalmoscopy of the left eye showed central macular pigmented area surrounded by subretinal fluid, haemorrhage and exudates. Fundus fluorescein angiography revealed left subfoveal CNV with surrounding macular oedema and peripheral retinal ischaemia. Radiation retinopathy associated CNV is a late ocular complication of cerebral radiotherapy. It should be investigated as a possible aetiology of severe visual loss in long-term survivors of cerebral tumours who have previously received radiotherapy
Non-Invasive Physiological Indicators of Heat Stress in Cattle
Cattle are susceptible to heat stress, especially those kept on high levels of nutrition for the purpose of maximising growth rates, which leads to a significant heat increment in their bodies. Consequences include compromised health and productivity and mortalities during extreme events, as well as serious economic loss. Some measures of heat stress, such as plasma cortisol and temperature in the rectum, vagina, or rumen, are invasive and therefore unlikely to be used on farms. These may cause additional stress to the animal due to handling, and that stress in itself can confound the measure. Consequently, it is desirable to find non-invasive alternatives. Panting score (PS), cortisol metabolites in faeces, milk, or hair, and the infrared temperature of external body surfaces are all potentially useful. Respiratory indicators are difficult and time consuming to record accurately, and cortisol metabolites are expensive and technically difficult to analyse. Infrared temperature appears to offer the best solution but requires further research to determine the thresholds that define when corrective actions are required to ensure optimal health and productivity. Research in this area has the potential to ultimately improve the welfare and profitability of cattle farming.</jats:p
