7 research outputs found

    Pharmacological Activation of the EDA/EDAR Signaling Pathway Restores Salivary Gland Function following Radiation-Induced Damage

    Get PDF
    Radiotherapy of head and neck cancers often results in collateral damage to adjacent salivary glands associated with clinically significant hyposalivation and xerostomia. Due to the reduced capacity of salivary glands to regenerate, hyposalivation is treated by substitution with artificial saliva, rather than through functional restoration of the glands. During embryogenesis, the ectodysplasin/ectodysplasin receptor (EDA/EDAR) signaling pathway is a critical element in the development and growth of salivary glands. We have assessed the effects of pharmacological activation of this pathway in a mouse model of radiation-induced salivary gland dysfunction. We report that post-irradiation administration of an EDAR-agonist monoclonal antibody (mAbEDAR1) normalizes function of radiation damaged adult salivary glands as determined by stimulated salivary flow rates. In addition, salivary gland structure and homeostasis is restored to pre-irradiation levels. These results suggest that transient activation of pathways involved in salivary gland development could facilitate regeneration and restoration of function following damage

    Radiation Produces Irreversible Chronic Dysfunction in the Submandibular Glands of the Rat

    Get PDF
    The exposure to high doses of ionizing radiation during radiotherapy results in severe morphological and functional alterations of the salivary glands, such as xerostomia. In the present study we investigated the chronic effect of a single radiation dose of 15 Gray (Gy) limited to head and neck on rat salivary gland function (salivary secretion and gland mass) and histology. Results indicate that norepinephrine (NE)-induced salivary secretion was reduced significantly at 30, 90, 180 and 365 days after the administration of a single dose of 15 Gy of ionizing radiation compared to non-irradiated animals. The maximal secretory response was reduced by 33% at 30 and 90 days post irradiation. Interestingly, a new fall in the salivary response to NE was observed at 180 days and was maintained at 365 days post irradiation, showing a 75% reduction in the maximal response. The functional fall of the salivary secretion observed at 180 days post irradiation was not only associated with a reduction of gland mass but also to an alteration of the epithelial architecture exhibiting a changed proportion of ducts and acini, loss of eosinophilic secretor granular material, and glandular vacuolization and fibrosis. On the basis of the presented results, we conclude that ionizing radiation produces irreversible and progressive alterations of submandibular gland (SMG) function and morphology that leads to a severe salivary hypo-function
    corecore