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Abstract

Radiotherapy of head and neck cancers often results in collateral damage to adjacent salivary glands associated with
clinically significant hyposalivation and xerostomia. Due to the reduced capacity of salivary glands to regenerate,
hyposalivation is treated by substitution with artificial saliva, rather than through functional restoration of the glands.
During embryogenesis, the ectodysplasin/ectodysplasin receptor (EDA/EDAR) signaling pathway is a critical element in the
development and growth of salivary glands. We have assessed the effects of pharmacological activation of this pathway in a
mouse model of radiation-induced salivary gland dysfunction. We report that post-irradiation administration of an EDAR-
agonist monoclonal antibody (mAbEDAR1) normalizes function of radiation damaged adult salivary glands as determined
by stimulated salivary flow rates. In addition, salivary gland structure and homeostasis is restored to pre-irradiation levels.
These results suggest that transient activation of pathways involved in salivary gland development could facilitate
regeneration and restoration of function following damage.
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Introduction

Approximately 40,000 new cases of head and neck cancer are

diagnosed each year in the United States with five year survival

rates around 64% [1]. Treatment for head and neck cancer

typically involves surgical resection with subsequent radiation or

chemoradiation therapy [2]. These necessary but tissue-nonspe-

cific treatment modalities are associated with inadvertent and

often clinically significant damage to surrounding normal tissues.

Side effects include mucositis, xerostomia, dysphagia and malnu-

trition. Loss of saliva production in these patients predisposes them

to periodontal disease, rampant caries, increased susceptibility to

oropharyngeal candidiasis, changes in taste, and significant

reductions in quality of life [3–5].

At a tissue level, salivary glands in close proximity to the tumor

exhibit both acute and chronic responses to radiation damage.

Depending upon the level of radiation exposure, chronic responses

may last months, years and even become permanent after

completion of radiation therapy [3–5]. A number of tissue

pathologies have been reported in irradiated salivary glands

including loss of acinar cells, focal inflammation, atrophy,

vacuolization, and fibrosis [4]. As a result there are a significant

number of patients who have completed their treatment regimen

that continue to suffer from these side effects [6]. The currently

available xerostomia treatment options are palliative at best and

are not considered a long-term solution [3].

It has been postulated that tissue regeneration following injury

may recapitulate normal development and utilize molecular

signaling pathways active in organ morphogenesis [7]. The

murine Tabby mutant is deficient in the key ectodermal signaling

molecule ectodysplasin-A1 (EDA), which is required during

prenatal development to trigger signal transduction from its

receptor EDAR, thereby initiating development and morphogen-

esis of a range of structures, including hair follicles, teeth, and a

number of glands, including salivary glands [8]. Absence of this

signal results in generalized secretory gland hypoplasia including

reduced salivary gland branching, weight, and secretory output

[9]. This phenotype can be reversed in organ culture of embryonic

Tabby salivary glands by administering exogenous EDA-A1

protein [10,11]. Tabby is an animal model for the human

ectodermal disorder XLHED (X-linked hypohidrotic ectodermal

dysplasia), which is also caused by mutation of the EDA gene, and

patients affected by XLHED have been demonstrated to have

reduced salivary output.

A majority of salivary gland regeneration studies have focused

on the ductal ligation protocol which involves surgical placement

of a metal clip over the main excretory ducts of the submandibular

salivary glands for 1–2 weeks followed by removal of the clip.
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Within 3–8 weeks of deligation, submandibular glands restore

excretory function and glandular structure [12]. Embryonic-like

branched structures can be detected during early time points

following deligation (3–7 days) and these structures have been

hypothesized to play a critical role in regeneration of acinar cells

that were lost during the ligation phase [13,14]. EDA/EDAR

mediated signaling has been shown to promote branching

morphogenesis during salivary and mammary gland development

[9,15]; however its role in regeneration is currently unknown.

Modulation of the EDAR pathway activity in adults has become

possible with the development of pharmacological agents to

stimulate signaling (recombinant EDA or monoclonal antibodies

against EDAR) or to block endogenous EDA-A1 from binding to

its receptor (monoclonal antibodies against EDA) [8]. mAbE-

DAR1 is an agonist monoclonal antibody that binds specifically to

the extracellular domain of EDAR and activates the downstream

EDA/EDAR signaling pathway [16]. In both mouse and dog

models of XLHED, a single administration of mAbEDAR1

corrected the EDA-deficient hair and sweat gland phenotype

demonstrating the functional equivalence of mAbEDAR1 and

EDA ligand [16]. Based on the key role of EDA/EDAR signaling

in embryonic salivary gland development, we hypothesized that

mAbEDAR1 activation of this signaling pathway following head

and neck irradiation could enhance salivary gland regeneration

and reduce the clinically significant complications associated with

xerostomia. We have used a mouse model to test this hypothesis,

incorporating a 5 Gy single dose irradiation to the head and neck

area, which includes major and minor salivary glands. We assessed

the role of exogenously driven EDAR pathway activation in

stimulating salivary gland regeneration and functional recovery

from 3 days post-irradiation through day 90, similar to previous

restoration models [17]. In this system we report that post-

irradiation mAbEDAR1 therapy induces structural and functional

restoration of salivary glands.

Materials and Methods

Mice Treatment
Experiments were conducted on 5 week old female FVB mice

(Taconic Farms, Oxnard, CA). Mice were housed and treated in

accordance with protocols approved by the University of Arizona

Institutional Animal Care and Use committee (IACUC). On day

zero, mice were anesthetized with an intramuscular injection of

Ketamine/Xylazine (50 mg/kg/10 mg/kg respectively; Western

Medical Supply, Arcadia, CA). Mice were then placed in a holding

device, with the head and neck region exposed, while the

remainder of the body was shielded with .0.6 mm of lead. Mice

were irradiated with a single 5 Gy dose of radiation (day 0 of time

course). On day four, a sub-group of untreated and irradiated mice

received a single tail vein injection of mAbEDAR1 (5 mg/kg in

PBS, Edimer Pharmaceuticals, Cambridge, MA) similar to a

previous study using this compound [16]. The rationale for

systemic (iv) administration of mAbEDAR included previous work

on the functionality and half-life of mAbEDAR by this route, the

feasibility of one injection reaching all major and minor salivary

glands, and the greatest translatability to the clinical setting. The

remaining untreated and irradiated mice received a vehicle (PBS)

injection. All experiments were approved by IACUC.

RNA isolation and RT/PCR Analysis
Total RNA was isolated from the parotid glands using the

RNeasy isolation kit (Qiagen, Germantown, MD, USA) with

DNase treatment and diluted to 200 ng/mL [18]. 5 mL of diluted

RNA was added to 1 mL of Oligo(dT)20, 1 mL H2O and 1 mL of

Annealing Buffer. This was heated to 65uC for 5 minutes, and

cooled on ice for 1 minute. 10 ml of 2X First-Strand Reaction Mix

and 2 ml of SuperScript III/RNAseOUT Enzyme Mix (Invitro-

gen, Carlsbad, CA, USA) were added and the reaction was

incubated for 50 minutes at 50uC and 5 minutes at 85uC. cDNA

was diluted with 80 mL of H2O for real-time PCR reaction. Each

real-time PCR reaction contained 5 ml of diluted cDNA, 1 ml of

each primer at 10 mM each, 12.5 ml SYBR Green (Qiagen), and

nuclease-free water for a final volume of 25 ml. Forward and

reverse primer (IDT, San Diego, CA) sequences are as follows:

EDAR forward, TGTCCTCCATGCAGACCAG; EDAR re-

verse, GCATATCTGATAACCTCCTTTGG; S15 forward, AT-

CATTCTGCCCGAGATGGTG; S15 reverse, TGCTTTACG-

GGCTTGTAGGTG. Reactions were conducted in triplicate for

each sample using the iQ5 Real-Time PCR Detection System

(Bio-Rad, Hercules, CA). PCR conditions were, 95uC for 15

seconds, 54uC for 30 seconds, 72uC for 30 seconds for 40 cycles.

Detection occurred during the 72uC step during each cycle. The

data were analyzed using a 2DDCt method [19]. Thresholds cycle

values were normalized to S15. Normalized values from 4 mice/

group are represented as relative fold over untreated.

Saliva Collections
Stimulated saliva collections were performed according to

previously published reports [17,20–25]. Mice received an

intraperitoneal injection of carbachol 0.25 mg/kg (Sigma-Aldrich,

St. Louis, MO) to stimulate salivary flow. Mice were then placed

into a restraining device and saliva was collected for 5 minutes into

weighed tubes on ice. Five minute collections on unanaesthetized

mice were conducted according to a previously published study

[26] and chosen to minimize the stress to the animals. Once

completed, samples were then frozen on dry ice. Salivary flow

rates (mg/min) were determined by calculating the change in

collection tube weight (post-pre) divided by the collection time

(5 min). The average mg/min value for the untreated animals was

set to 100% (normalized value of 1) for each collection day. Each

mg/min value for the experimental animals was divided by the

average untreated mg/min value for each collection day to

determine the percent change. Similar to our previous studies,

no significant differences in body weight between the treatment

groups were detected; therefore body weight is not used in the

salivary flow rate calculation. Collections were performed on days

3, 14, 30, 60 and 90 post-irradiation with .16 mice per treatment.

Tissue collection
Following anesthesia, salivary glands were removed, immedi-

ately fixed for 24 hours with 10% formalin (Fisher Diagnostics,

Kalamazoo, MI) and then transferred to 70% ethanol. Tissue was

embedded into paraffin, cut to 4 mm sections, and stained with

hemotoxylin and eosin by the Histology Service Laboratory in the

Department of Cellular and Molecular Medicine at the University

of Arizona.

Vacuole analysis
For each mouse, two images of hemotoxylin and eosin stained

submandibular gland sections were collected at non-overlapping

locations close to the center of the gland. Images were taken at

200X. Using ImagePro (Media Cybernetics, Silver Spring, MD)

software, a subregion within each image was defined to avoid

gland edges, large lumens, fissures, and large blood vessels. Within

this area of interest each vacuole, defined as an unstained, acellular

area greater than 7.35 mm in diameter, was outlined to determine

its area. Unstained areas were not included for measurement if

Activation of EDA/EDAR Pathway Restores Function following Damage
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they were epithelially bounded (i.e. the unstained region was a

lumen) or if they were long fissures related to the lobular structure

of the gland. Clusters of vacuoles separated only by a thin strand of

cytoplasm, and not separated by any cell nuclei, were measured as

a single vacuole. Area data for vacuoles from a given image were

summed using ImagePro software and used to determine the

proportion of total area of interest that was represented by

vacuoles. The values for the two images collected from each

animal were averaged to yield a vacuole percentage for each

animal and these results were then evaluated for each treatment

group (N = 4/group). All vacuoles were in the acinar compartment

and no vacuoles were found within the ductal compartment.

Amylase staining
Serial sectioned unstained slides were incubated at 37uC for 30

minutes. Paraffin was removed though incubation in Histo-Clear

(National Diagnostics, Atlanta, GA) followed by rehydration

washes in 100%, 95%, 70%, 50% ethanol and deionized water.

Peroxidases were neutralized with 0.3% H2O2 (Fisher Scientific,

Fair Lawn, NJ). Slides in 10 mM citric acid (pH 6.0) were heated

in a microwave for two 5 minute intervals then cooled for 20

minutes at room temperature. Slides were washed with PBS,

blocked with 0.5% NEN (Boston, MA) at room temperature for

1 hour, and then incubated in anti-amylase primary antibody

(1:1000) overnight at 4uC (Sigma-Aldrich). Slides were washed and

incubated in secondary antibody Anti-Rabbit AlexaFluor594

(1:500) (Invitrogen) at room temperature for 1 hour, counter-

stained with DAPI, then mounted with 50% glycerol in 10 mM

Tris-HCl (pH 8.0). Images were obtained using a Leica DM5500

Microscope System and captured with a Spot Pursuit 4 Megapixel

CCD camera (Diagnostic Instruments, Inc., Sterling Heights, MI).

Analysis was performed with ImagePro 6.3 software. Amylase-

positive area was measured from twenty fields of view

(FOV = 0.39 mm2) per mouse with 4 mice per treatment. Data

are shown as the percent of amylase positive area to the total area

of the parotid gland.

PCNA staining
Serial sectioned unstained slides were incubated at 37uC for 30

minutes. Paraffin removal, rehydration, peroxidase neutralization

and antigen retrieval were performed as described above for

amylase staining. Slides were washed with PBS, blocked with goat

serum from the ABC Rabbit Kit (Vector Laboratories, Burlin-

game, CA) and then incubated with anti-PCNA antibody (Santa

Cruz Biotechnology) overnight at 4uC. Slides were washed and

incubated in secondary antibody from the ABC Rabbit Kit. Color

detection utilized DAB (Biogenex Laboratories, Fremont, CA) for

6 min per slide. Slides were counterstained using Harris hema-

toxylin (Sigma-Aldrich, St. Louis, MO), dehydrated, and mounted

using Protocol Securemount (Fisher Scientific). Images were

obtained using a Leica DM5500 and 4 megapixel Pursuit camera.

PCNA-positive and total acinar cells in the parotid gland were

counted manually from at least 3 fields per slide at 200X. Data are

graphed as a percentage of PCNA positive acinar cells to total

acinar cells from 4 mice per treatment.

Statistical analysis
Salivary flow rates were normalized by collection day to

corresponding untreated group for each time point and analyzed

by ANOVA with a Student-Newman-Keuls post-hoc test. For

Figure 1C only, salivary flow rate comparison between unirradi-

ated (UT) and irradiated (5Gy) was determined by t-test using

Microsoft Excel. Real-time RT/PCR, vacuole area, amylase area

and PCNA indices were analyzed by ANOVA with a Bonferroni

post-hoc test. Statistical analysis of data and graph generation was

completed using Graph-Pad software. All error bars represent

standard error of the mean (SEM). Multiple comparison statistical

differences are represented by lower case letters within individual

graphs. Treatment groups with the same letters are not

significantly different from each other. Therefore if a group is

designated as ‘‘a’’ then it is statistically different from a group

designated as ‘‘b’’ or ‘‘c’’. If a group is designated as ‘‘ab’’ then it is

not statistically different from a group designated as ‘‘a’’ or ‘‘b’’.

Results

EDA receptor levels are maintained at day 4 and
progressively decline at days 5–10 following radiation

Activation of the EDA/EDAR signaling pathway by mAbE-

DAR1 relies on endogenous expression of the EDA-A1 receptor

(EDAR). We sought to determine the effect of radiation on Edar
expression levels over a time period similar to previously published

salivary restoration studies (days 4–10; Figure 1A). Multiple

comparison statistics were completed to compare each time point

and treatment groups with the same letters are not significantly

different from each other. Four days after radiation treatment,

Edar levels were not statistically different (both within statistical

group ‘‘a’’) from unirradiated controls (UT). At day 5, Edar levels

began to decline (not statistically different from unirradiated

controls or radiation day 4) and by radiation days 6–10 were

significantly reduced at when compared to unirradiated controls.

Therefore the experimental design (Figure 1B) utilized an injection

of mAbEDAR1 on day 4, which is after the significant reductions

in salivary flow rates (day 3, Figure 1C) but prior to reductions in

Edar expression (Figure 1A).

mAbEDAR1 administration following radiation restores
stimulated salivary flow rates to pretreatment levels

Once significant reductions in salivary flow rates were

confirmed in irradiated animals (Figure 1C), mice were random-

ized into mAbEDAR1 or vehicle control treatment groups and

respective injections were administered on day 4. Stimulated

salivary flow rates were again determined at days 14, 30, 60 and

90 following radiation treatment (Figure 2) with multiple compar-

ison statistics completed by time point (treatment groups with the

same letters are not significantly different from each other). On

average, untreated flow rates were ,27 mg/min across all time

points. At day 14, irradiated animals had significant reductions in

stimulated salivary flow rates (statistical group ‘‘c’’) when

compared to unirradiated controls (CTRL, statistical group ‘‘a’’).

In contrast, animals receiving post-therapy mAbEDAR1 have

improved stimulated salivary flow rates (statistical group ‘‘b’’) that

are significantly higher than irradiated animals, albeit the levels

have not reached unirradiated controls. Following these animals

from days 30–90 revealed that post-therapy mAbEDAR1 was able

to restore stimulated salivary flow rates to untreated levels (both

statistical group ‘‘a’’) while irradiated animals continued to display

reduced function. Treatment with mAbEDAR1 alone did not alter

stimulated salivary flow rates at days 30 and 90; however salivary

secretion was significantly higher in these animals at day 60. It is

unclear why treatment with mAbEDAR alone resulted in elevated

secretion at one intermediate time point (day 60), while it was

similar to untreated controls at days 14, 30 and 90. Overall, these

results suggest that post-therapy mAbEDAR1 is able to restore

secretion in salivary glands that have been damaged by radiation.

Activation of EDA/EDAR Pathway Restores Function following Damage

PLOS ONE | www.plosone.org 3 November 2014 | Volume 9 | Issue 11 | e112840



Increased vacuolization in irradiated salivary glands is
reversed with post-therapy mAbEDAR1

Previously described histological changes in salivary glands

following radiation consist of focal inflammation, atrophy and

fibrosis [4]. Analysis of H&E sections from the current study

revealed similar histological alterations as previous reports

(pathologic features noted with arrowheads and asterisks in

Figure 3 and data not shown) as well as the presence of cellular

vacuoles in irradiated sections of the submandibular salivary

gland. Vacuoles were defined as an unstained, acellular area

greater than 7.35 mm in diameter that did not denote a lumen and

were outlined to determine their aggregate area (representative

annotated image in Figure 4A). The most prominent differences

were detected at day 60 post-irradiation; therefore this time point

was selected for further analysis. The percent area occupied by

vacuoles (combined annotated area/total area) was significantly

higher in irradiated submandibular glands when compared to

unirradiated controls (Figure 4B). Importantly, the percent area

with vacuoles in animals receiving mAbEDAR1 following

radiation was not different from untreated controls. These data

suggest that radiation induces persistent histological changes in

salivary gland structure that is repaired in animals treated with

post-irradiation mAbEDAR1.

Restoration of amylase positive area in parotid glands of
mice treated with post-therapy mAbEDAR1

Saliva production requires the movement of water as well as the

production of numerous salivary proteins [27]. Amylase is a

salivary protein made by parotid salivary glands that is frequently

reduced following radiation treatment [17,25,28]. Therefore we

determined the area of the parotid gland that had restored amylase

Figure 1. Analysis of Edar expression following radiation and
experimental design of study. (A) On day 0 the head and neck
region of mice was exposed to a single dose of 5 Gy radiation. Edar
expression (mRNA) in parotid salivary glands was determined on days
4–10 post-radiation as described in the materials and methods and
graphed as fold over unirradiated (UT). Significant differences (p,0.05)
were determined using an ANOVA followed by a Bonferroni post-hoc
test. Treatment groups with the same lower case letters are not
significantly different from each other. N = 4 mice per group. (B)
Experimental design timeline. (C) Three days post-radiation stimulated
salivary flow rates were determined as described in the materials and
methods. Irradiated flow rates were normalized to corresponding
unirradiated (UT) controls. There were 60 animals in the control (UT)
and 62 animals in the irradiated group (5Gy). Significant difference (p,
0.05) was determined by t-test and designated by an asterisk (*). All
error bars represent standard error of the mean (SEM).
doi:10.1371/journal.pone.0112840.g001

Figure 2. mAbEDAR1 administration following radiation re-
stores stimulated salivary flow rates to pretreatment levels. On
day 0, the head and neck region of mice was exposed to a single dose
of 5 Gy radiation. On day 4, mice received a single dose injection of
mAbEDAR or vehicle control. Stimulated salivary flow rates were
determined on days 14, 30, 60, 90 post-irradiation. Flow rates (mean+/2
SEM) were calculated by determining the average mg/min value for the
unirradiated controls (CTRL) for each collection day followed by the
percent change in individual experimental animals. Unirradiated
controls averaged ,27 mg/min across all time points and were set to
100% (normalized value of 1) for each time point. Significant differences
(p,0.05) were determined using an ANOVA followed by a Student-
Newman-Keuls post-hoc test. Treatment groups with the same lower
case letters are not significantly different from each other. All error bars
represent standard error of the mean (SEM). N.16 mice per group.
doi:10.1371/journal.pone.0112840.g002

Activation of EDA/EDAR Pathway Restores Function following Damage
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Figure 3. Histological analysis of salivary glands. Mice were treated as described in Figure 2 and submandibular salivary glands were collected
at day 60 for histological analysis. Representative H&E images from unirradiated control (A), mAbEDAR1 alone (B), irradiated with 5Gy (C) and 5Gy+
mAbEDAR are shown (D). Areas of focal inflammation denoted with asterisks and vacuoles are delineated by an arrowhead.
doi:10.1371/journal.pone.0112840.g003

Figure 4. Increased vacuolization in irradiated salivary glands is reversed with post-therapy mAbEDAR1. H&E images from
submandibular salivary glands were analyzed for cellular vacuoles as described in the materials and methods. Vacuoles were defined as an unstained,
acellular area greater than 7.35 mm in diameter. (A) Representative annotated image of vacuole measurement compared to the unmarked image is
shown. ImagePro software was utilized to calculate the area annotated as a vacuole compared to the total area in the image. (B) Quantification of the
percent area occupied by cellular vacuoles (mean+/2SEM) is graphed. Significant differences (p,0.05) were determined using an ANOVA followed by
a Bonferroni post-hoc test. Treatment groups with the same lower case letters are not significantly different from each other. All error bars represent
standard error of the mean (SEM). N = 4 mice per group.
doi:10.1371/journal.pone.0112840.g004

Activation of EDA/EDAR Pathway Restores Function following Damage
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protein production through morphometric analysis at days 30, 60

and 90 (Figure 5). Irradiated parotid glands had significant

reductions in the area expressing amylase when compared to

untreated controls at each time point evaluated. In contrast,

animals receiving mAbEDAR1 following radiation had restored

amylase expression in the parotid gland and there was no statistical

difference from untreated controls at each time point evaluated.

Similarly, animals treated with mAbEDAR1 alone did not display

significant changes in amylase area in the parotid gland at each

time point evaluated. These data suggest that post-therapy

mAbEDAR1 restores amylase protein production in parotid

glands damaged by radiation.

Reduced compensatory proliferation in mice treated with
post-therapy mAbEDAR1

Glandular homeostasis requires a balance between proliferation

and differentiation. Radiation damage causes apoptosis of salivary

acinar cells [20,29] and loss of these cells induces a proliferation

response in the surrounding cells [17]. This compensatory

proliferation response is intended to replace the cells lost to

apoptosis [30]; however prolonged increases in proliferation are

correlated with reductions in salivary flow rates [17]. Therefore we

determined the level of proliferation through PCNA staining and

quantification of the number of positive cells in the acinar

compartment at days 30, 60 and 90 (Figure 6). At each time point

evaluated, irradiated animals have significant increases in the

number of PCNA positive cells when compared to untreated

controls. In contrast, animals receiving mAbEDAR1 following

radiation have reduced numbers of PCNA positive cells which

does not differ from untreated controls each time point evaluated.

Animals treated with mAbEDAR1 alone exhibited more variation

in proliferation levels; however this group was not statistically

different from untreated controls at each time point evaluated

(mAbEDAR statistical group ‘‘ab’’ is not different from statistical

group ‘‘a’’). These results suggest that salivary gland homeostasis,

as well as histological structure and glandular function, are

restored in animals treated post-therapy with mAbEDAR1.

Discussion

Due to the chronic effects of radiation on salivary gland

function, there are numerous patients who have completed their

anti-cancer therapy yet still suffer the side effects of that therapy.

Currently there are few approved therapies that can substantially

improve the quality of life for these individuals [3]. In this

preclinical study we have investigated a new therapeutic for its

potential use in restoring salivary gland function following

radiotherapy. Utilization of mAbEDAR1 in animals with radia-

tion-induced loss of function led to an improvement in physiolog-

ical function of the salivary glands at day 14 and a complete

restoration of function by day 30 (Figure 2). This improvement in

function was maintained to 90 days post radiation. Restoration of

salivary gland function has been previously described utilizing

gene therapy with Adenoviral vectors or growth factors (IGF1 or

KGF) [6,17,31,32]. Adenoviral restoration of salivary gland

Figure 5. Restoration of amylase positive area in parotid glands of mice treated with post-therapy mAbEDAR1. Mice were treated as
described in Figure 2 and parotid salivary glands were collected at days 30, 60, and 90 for analysis of amylase area. (A) Representative images from
each treatment group are shown. Quantification of the mean area of parotid tissue staining positive for amylase was performed as described in the
materials and methods at days 30 (B), 60 (C) and 90 (D). Significant differences (p,0.05) were determined using an ANOVA followed by a Bonferroni
post-hoc test. Treatment groups with the same lower case letters are not significantly different from each other. All error bars represent standard
error of the mean (SEM). N = 4 mice per group.
doi:10.1371/journal.pone.0112840.g005
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function has primarily focused on increasing expression of a water

channel (aquaporin 1) via local injection into salivary glands [32].

This results in improved salivary output within three days and

subsequent studies have extended this effect in a phase I clinical

trial [6]. The results in the current study are similar to a previous

study with post-radiation injections of Insulin-like Growth Factor 1

(IGF1). Post therapy injections of IGF1 resulted in improved

salivary output at day 30 and complete restoration by day 60 [17].

Post therapy injection of mAbEDAR resulted in an expedited

response with improved salivary output at day 14 and complete

restoration by day 30 (Figure 2). In contrast, post-radiation

injections of Keratinocyte Growth Factor (KGF) did not show

improvement in salivary output at day 30 [31]. Importantly,

mAbEDAR1 was administered through a single systemic injection

while IGF1 was given over multiple injections. The effectiveness of

a single administration of mAbEDAR1 may be due to the long

half-life of this antibody, estimated at approximately 11 days in
vivo [16]. Thus it is likely that sustained stimulation of the EDAR

pathway was achieved in these experiments and the beneficial

effect of treatment on salivary function persists beyond the time of

plasma antibody clearance, as indicated by the sustained

restoration measured at 90 days post-irradiation. While the

objective measurement of salivary output does not always correlate

with the subjective symptom of xerostomia [3], a recent clinical

trial examining the re-expression of aquaporin channels following

radiation suggests that increasing fluid movement has a positive

effect on xerostomia [6].

The presence of cytoplasmic vacuoles has been previously

reported in both parotid and submandibular salivary glands [33–

36]. Early ultrastructural analysis using electron microscopy of

irradiated parotid glands detected small vacuoles four days after

treatment [33]. Most studies have reported the histological

presence of vacuoles at acute time points (up to 10 days); however

a few studies looked at more chronic time points (60–90 days) [34–

36]. We have extended this analysis by quantifying the percentage

of salivary gland area occupied by vacuoles following radiation

(Figure 4). Importantly, injection of mAbEDAR1 post-radiation

was able to reduce the aggregate area with vacuoles in the

submandibular glands and restore the overall histological structure

to that of an unirradiated state (Figure 4). The presence of

vacuoles has also been reported upon acute starvation of rats with

small vacuoles appearing in salivary glands at 24 hours that

increase in size at 72 hours [37]. However in the current study,

irradiated animals continue to eat and do not lose more than 10%

body weight so reductions in food intake do not appear to explain

the chronic presence of these vacuoles.

Saliva is a complex fluid and requires the movement of water

through aquaporin channels and the production of saliva proteins

by the acinar cells [27]. Therefore, alterations to the differentiation

state of the gland can adversely affect these crucial functions.

Clinically, radiation exposure to salivary glands leads to a loss of

Figure 6. Reduced compensatory proliferation in mice treated with post-therapy mAbEDAR1. Mice were treated as described in Figure 2
and parotid salivary glands were collected at days 30, 60, and 90 for analysis of PCNA levels. (A) Representative images from each treatment group are
shown. The total number of PCNA positive cells in the acinar compartment was graphed as a percentage of total number of cells in the acinar
compartment at days 30 (B), 60 (C) and 90 (D). Significant differences (p,0.05) were determined using an ANOVA followed by a Bonferroni post-hoc
test. Treatment groups with the same lower case letters are not significantly different from each other. All error bars represent standard error of the
mean (SEM). N = 4 mice per group.
doi:10.1371/journal.pone.0112840.g006

Activation of EDA/EDAR Pathway Restores Function following Damage

PLOS ONE | www.plosone.org 7 November 2014 | Volume 9 | Issue 11 | e112840



amylase production and secretion, which has been recapitulated in

animal models [17,25,28]. In addition, the loss of salivary acinar

cells following radiation treatment induces a compensatory

proliferation response to replace these cells [38–40]. However if

proliferation remains elevated, it correlates with chronic loss of

salivary gland function [17]. Since mAbEDAR1 was able to

restore salivary secretion, it was important to validate that

glandular homeostasis was also restored through amylase area

analysis and proliferation indices. Similar to previously published

models, radiation treatment led to reductions in amylase area

(Figure 5) and increases in proliferation indices (Figure 6), which

are indicative of an overall decrease in differentiation. In contrast,

treatment with mAbEDAR1 following radiation led to improved

amylase area and decreased compensatory proliferation which is

indicative of restored homeostasis. Relatively few studies have

confirmed improvements in secretion with salivary protein

production. The effects of mAbEDAR1 on glandular homeostasis

are similar to the model of IGF1 restoration [17]. This suggests

that therapies which target improving the balance between

differentiation and proliferation could restore function in this

population.

Mouse models with defects in EDA or EDAR have both acinar

and ductal phenotypes suggesting this pathway is important to a

majority of salivary cells. In situ hybridization or immunohisto-

chemistry detection of EDA/EDAR has been conducted on

developmental time points in the submandibular gland and have

shown the presence of EDA/EDAR in ducts and terminal end

buds [9,10]. In addition, it has been previously demonstrated that

EDA is required for epithelial differentiation of the salivary gland

[9]. Since acinar cells undergo apoptosis at acute time points (,

48 hr) following radiation, it is possible that the EDA pathway

facilitates the differentiation step of new acinar cells during

regeneration.

This is the first study to our knowledge that utilizes pharma-

cological activation of a developmentally relevant pathway in

reversing radiation damage to salivary glands. EDAR signaling has

been shown to promote epithelial expansion and branching in

cultured embryonic salivary glands [9,10], and, in vivo, high level

EDAR function in transgenic mice results in more highly

branched adult salivary glands [41]. Embryonic-like branched

structures also appear to be important in regeneration of adult

mouse salivary glands following ductal ligation/deligation [13,14]

and these structures could be responsive to EDAR stimulation.

However, significant reductions in Edar expression several days

after irradiation (Figure 1A) could confound the ability of salivary

glands to regenerate by limiting the presence of these regenerative

branching structures. In addition to its effects on branching

morphology, loss of EDAR function also leads to impaired cellular

differentiation and duct formation [9]. Administration of mAbE-

DAR following radiation resulted in improved histological

structure and amylase area (differentiation marker) suggesting a

role in tissue pathology recovery and facilitation of differentiation

during regeneration. (Figures 3 and 5). It would be of interest to

determine whether there are commonalities in the cellular and

molecular mechanisms of action of EDAR stimulation in the

context of regenerating, as opposed to developing, salivary glands.

It has been previously shown that EDAR signaling is not necessary

for initiation of salivary glands which suggests this pathway may

not affect stem cells during development [9]; however future

studies could address the involvement of EDAR signaling in repair

and regeneration. While exploratory in nature, these results

highlight the potential for novel therapeutic paradigms to address

a significant unmet medical need in the field of head and neck

oncology.
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