1,271 research outputs found

    Dynamics of Lennard-Jones clusters: A characterization of the activation-relaxation technique

    Full text link
    The potential energy surface (PES) of Lennard-Jones clusters is investigated using the activation-relaxation technique (ART). This method defines events in the configurational energy landscape as a two-step process: (a) a configuration is first activated from a local minimum to a nearby saddle-point and (b) is then relaxed to a new minimum. Although ART has been applied with success to a wide range of materials such as a-Si, a-SiO2 and binary Lennard-Jones glasses, questions remain regarding the biases of the technique. We address some of these questions in a detailed study of ART-generated events in Lennard-Jones (LJ) clusters, a system for which much is already known. In particular, we study the distribution of saddle-points, the pathways between configurations, and the reversibility of paths. We find that ART can identify all trajectories with a first-order saddle point leaving a given minimum, is fully reversible, and samples events following the Boltzmann weight at the saddle point.Comment: 8 pages, 7 figures in postscrip

    Energy landscape of relaxed amorphous silicon

    Full text link
    We analyze the structure of the energy landscape of a well-relaxed 1000-atom model of amorphous silicon using the activation-relaxation technique (ART nouveau). Generating more than 40,000 events starting from a single minimum, we find that activated mechanisms are local in nature, that they are distributed uniformly throughout the model and that the activation energy is limited by the cost of breaking one bond, independently of the complexity of the mechanism. The overall shape of the activation-energy-barrier distribution is also insensitive to the exact details of the configuration, indicating that well-relaxed configurations see essentially the same environment. These results underscore the localized nature of relaxation in this material.Comment: 8 pages, 12 figure

    Activated sampling in complex materials at finite temperature: the properly-obeying-probability activation-relaxation technique

    Full text link
    While the dynamics of many complex systems is dominated by activated events, there are very few simulation methods that take advantage of this fact. Most of these procedures are restricted to relatively simple systems or, as with the activation-relaxation technique (ART), sample the conformation space efficiently at the cost of a correct thermodynamical description. We present here an extension of ART, the properly-obeying-probability ART (POP-ART), that obeys detailed balance and samples correctly the thermodynamic ensemble. Testing POP-ART on two model systems, a vacancy and an interstitial in crystalline silicon, we show that this method recovers the proper thermodynamical weights associated with the various accessible states and is significantly faster than MD in the diffusion of a vacancy below 700 K.Comment: 10 pages, 3 figure

    Gallium self-interstitial relaxation in Gallium Arsenide: an {ab initio} characterization

    Full text link
    Ga interstitials in GaAs (IGaI_{Ga}) are studied using the local-orbital {ab-initio} code SIESTA in a supercell of {216+1} atoms. Starting from eight different initial configurations, we find five metastable structures: the two tetrahedral sites in addition to the 110-split[Ga−As]\mathrm{_{[Ga-As]}}, 111-split[Ga−As]\mathrm{_{[Ga-As]}}, and 100-split[Ga−Ga]\mathrm{_{[Ga-Ga]}}. Studying the competition between various configuration and charges of IGaI_{Ga}, we find that predominant gallium interstitials in GaAs are charged +1, neutral or at most -1 depending on doping conditions and prefer to occupy the tetrahedral configuration where it is surrounded by Ga atoms. Our results are in excellent agreement with recent experimental results concerning the dominant charge of IGaI_{Ga}, underlining the importance of finite size effects in the calculation of defects.Comment: v1) 18 pages, 5 figures, submitted to PRB (Latex preprint version) v2) 9 pages, 5 figures, reviewed version resubmitted to PRB (correction to equation 1, some changes and reformulations, minor grammatical and typo corrections, added reference

    Self-vacancies in Gallium Arsenide: an ab initio calculation

    Full text link
    We report here a reexamination of the static properties of vacancies in GaAs by means of first-principles density-functional calculations using localized basis sets. Our calculated formation energies yields results that are in good agreement with recent experimental and {\it ab-initio} calculation and provide a complete description of the relaxation geometry and energetic for various charge state of vacancies from both sublattices. Gallium vacancies are stable in the 0, -, -2, -3 charge state, but V_Ga^-3 remains the dominant charge state for intrinsic and n-type GaAs, confirming results from positron annihilation. Interestingly, Arsenic vacancies show two successive negative-U transitions making only +1, -1 and -3 charge states stable, while the intermediate defects are metastable. The second transition (-/-3) brings a resonant bond relaxation for V_As^-3 similar to the one identified for silicon and GaAs divacancies.Comment: 14 page

    Nucleation and crystallization process of silicon using Stillinger-Weber potential

    Full text link
    We study the homogeneous nucleation process in Stillinger-Weber silicon in the NVT ensemble. A clear first-order transition from the liquid to crystal phase is observed thermodynamically with kinetic and structural evidence of the transformation. At 0.75 T_m, the critical cluster size is about 175 atoms. The lifetime distribution of clusters as a function of the maximum size their reach follows an inverse gaussian distribution as was predicted recently from the classical theory of nucleation (CNT). However, while there is a qualitative agreement with the CNT, the free energy curve obtained from the simulations differs significantly from the theoretical predictions, suggesting that the low-density liquid phase found recently could play a role in the nucleation process.Comment: 21 page

    Traveling through potential energy landscapes of disordered materials: the activation-relaxation technique

    Full text link
    A detailed description of the activation-relaxation technique (ART) is presented. This method defines events in the configurational energy landscape of disordered materials, such as a-Si, glasses and polymers, in a two-step process: first, a configuration is activated from a local minimum to a nearby saddle-point; next, the configuration is relaxed to a new minimum; this allows for jumps over energy barriers much higher than what can be reached with standard techniques. Such events can serve as basic steps in equilibrium and kinetic Monte Carlo schemes.Comment: 7 pages, 2 postscript figure

    Structural, electronic, and dynamical properties of amorphous gallium arsenide: a comparison between two topological models

    Full text link
    We present a detailed study of the effect of local chemical ordering on the structural, electronic, and dynamical properties of amorphous gallium arsenide. Using the recently-proposed ``activation-relaxation technique'' and empirical potentials, we have constructed two 216-atom tetrahedral continuous random networks with different topological properties, which were further relaxed using tight-binding molecular dynamics. The first network corresponds to the traditional, amorphous, Polk-type, network, randomly decorated with Ga and As atoms. The second is an amorphous structure with a minimum of wrong (homopolar) bonds, and therefore a minimum of odd-membered atomic rings, and thus corresponds to the Connell-Temkin model. By comparing the structural, electronic, and dynamical properties of these two models, we show that the Connell-Temkin network is energetically favored over Polk, but that most properties are little affected by the differences in topology. We conclude that most indirect experimental evidence for the presence (or absence) of wrong bonds is much weaker than previously believed and that only direct structural measurements, i.e., of such quantities as partial radial distribution functions, can provide quantitative information on these defects in a-GaAs.Comment: 10 pages, 7 ps figures with eps
    • …
    corecore