51 research outputs found

    Consolidation of an Olfactory Memory Trace in the Olfactory Bulb Is Required for Learning-Induced Survival of Adult-Born Neurons and Long-Term Memory

    Get PDF
    Background: It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis. Methodology/Principal Findings: Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days), but not a massed (within day), learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb. Conclusion/Significance: We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival durin

    Misguided Axonal Projections, Neural Cell Adhesion Molecule 180 mRNA Upregulation, and Altered Behavior in Mice Deficient for the Close Homolog of L1

    No full text
    Cell recognition molecules are involved in nervous system development and participate in synaptic plasticity in the adult brain. The close homolog of L1 (CHL1), a recently identified member of the L1 family of cell adhesion molecules, is expressed by neurons and glia in the central nervous system and by Schwann cells in the peripheral nervous system in a pattern overlapping, but distinct from, the other members of the L1 family. In humans, CHL1 (also referred to as CALL) is a candidate gene for 3p- syndrome-associated mental impairment. In the present study, we generated and analyzed CHL1-deficient mice. At the morphological level, these mice showed alterations of hippocampal mossy fiber organization and of olfactory axon projections. Expression of the mRNA of the synapse-specific neural cell adhesion molecule 180 isoform was upregulated in adult CHL1-deficient mice, but the mRNA levels of several other recognition molecules were not changed. The behavior of CHL1-deficient mice in the open field, the elevated plus maze, and the Morris water maze indicated that the mutant animals reacted differently to their environment. Our data show that the permanent absence of CHL1 results in misguided axonal projections and aberrant axonal connectivity and alters the exploratory behavior in novel environments, suggesting deficits in information processing in CHL1-deficient mice

    Neurexophilin 3 Is Highly Localized in Cortical and Cerebellar Regions and Is Functionally Important for Sensorimotor Gating and Motor Coordination

    Get PDF
    Neurexophilin 3 (Nxph3) is a specific ligand of synaptic alpha-neurexins that are essential for efficient neurotransmitter release. Previous biochemical work demonstrated that Nxph3 interacts with an extracellular domain of alpha-neurexins in a tight complex; however, no information is available on the localization or functional role of Nxph3 in the brain. Here, we generated lacZ reporter gene knock-in mice to investigate the distribution of Nxph3 at the single-cell level and Nxph3 knockout mice to examine its functional importance. Nxph3 expression was restricted mostly to subplate-derived neurons in cortical layer 6b, granule cells in the vestibulocerebellum, and Cajal-Retzius cells during development. Colabeling experiments demonstrated that neurons expressing Nxph3 do not belong to a uniform cell type. Morphological analyses and systematic behavioral testing of knockout mice revealed no anatomical defects but uncovered remarkable functional abnormalities in sensory information processing and motor coordination, evident by increased startle response, reduced prepulse inhibition, and poor rotarod performance. Since Nxph3-deficient mice behaved normally while performing a number of other tasks, our data suggest an important role for Nxph3 as a locally and temporally regulated neuropeptide-like molecule, presumably acting in a complex with alpha-neurexins in select neuronal circuits
    • 

    corecore