161 research outputs found

    Filamentational Instability of Partially Coherent Femtosecond Optical Pulses in Air

    Full text link
    The filamentational instability of spatially broadband femtosecond optical pulses in air is investigated by means of a kinetic wave equation for spatially incoherent photons. An explicit expression for the spatial amplification rate is derived and analyzed. It is found that the spatial spectral broadening of the pulse can lead to stabilization of the filamentation instability. Thus, optical smoothing techniques could optimize current applications of ultra-short laser pulses, such as atmospheric remote sensing.Comment: 8 pages, 2 figures, to appear in Optics Letter

    Tester for space micro-accelerometer

    Get PDF
    AbstractMicro-accelerometer MAC04 has been developed in order to measure very low accelerations such as those caused to satellites by atmospheric drag and other non-gravitational forces. The instrument uses a cubic proof-mass inside a small cavity. In an open loop the change of capacitance between the cube and 12 electrodes on the inner cavity surface is a measure of the applied acceleration. It is very difficult to ground test and calibrate such a device due to gravity. The tester simulates the change of capacitances (base capacitance 13,5pF, changes in a range of ±1.5pF). Complete closed loop system is presented

    Non-Gaussian Statistics of Multiple Filamentation

    Full text link
    We consider the statistics of light amplitude fluctuations for the propagation of a laser beam subjected to multiple filamentation in an amplified Kerr media, with both linear and nonlinear dissipation. Dissipation arrests the catastrophic collapse of filaments, causing their disintegration into almost linear waves. These waves form a nearly-Gaussian random field which seeds new filaments. For small amplitudes the probability density function (PDF) of light amplitude is close to Gaussian, while for large amplitudes the PDF has a long power-like tail which corresponds to strong non-Gaussian fluctuations, i.e. intermittency of strong optical turbulence. This tail is determined by the universal form of near singular filaments and the PDF for the maximum amplitudes of the filaments

    Effect of light polarization on plasma distribution and filament formation

    Full text link
    We show that, for 200 fs light pulses at 790 nm, the formation of filaments is strongly affected by the laser light polarization . Filamentation does not exist for a pure circularly polarized light, propagating in vacuum before focusing in air, while there is no difference for focusing the light in air or vacuum for linearly polarized light.Comment: 4pages 2 figure

    Enhanced second harmonic generation from resonant GaAs gratings

    Full text link
    We study second harmonic generation in nonlinear, GaAs gratings. We find large enhancement of conversion efficiency when the pump field excites the guided mode resonances of the grating. Under these circumstances the spectrum near the pump wavelength displays sharp resonances characterized by dramatic enhancements of local fields and favorable conditions for second harmonic generation, even in regimes of strong linear absorption at the harmonic wavelength. In particular, in a GaAs grating pumped at 1064nm, we predict second harmonic conversion efficiencies approximately five orders of magnitude larger than conversion rates achievable in either bulk or etalon structures of the same material.Comment: 8 page

    Dynamic Nonlinear X-waves for Femtosecond Pulse Propagation in Water

    Full text link
    Recent experiments on femtosecond pulses in water displayed long distance propagation analogous to that reported in air. We verify this phenomena numerically and show that the propagation is dynamic as opposed to self-guided. Furthermore, we demonstrate that the propagation can be interpreted as due to dynamic nonlinear X-waves whose robustness and role in long distance propagation is shown to follow from the interplay between nonlinearity and chromatic dispersion.Comment: 4 page

    Light Filaments Without Self Guiding

    Get PDF
    An examination of the propagation of intense 200 fs pulses in water reveals light filaments not sustained by the balance between Kerr-induced self-focusing and plasma-induced defocusing. Their appearance is interpreted as the consequence of a spontaneous reshaping of the wave packet form a gaussian into a conical wave, driven by the requirement of maximum localization, minimum losses and stationarity in the presence of non-linear absorption.Comment: Submitted to Phys. Rev. Lett. on July 7th, 200

    Targeting of the Plzf gene in the rat by transcription activator-like effector nuclease results in caudal regression syndrome in spontaneously hypertensive rats

    Get PDF
    Recently, it has been found that spontaneous mutation Lx (polydactyly-luxate syndrome) in the rat is determined by deletion of a conserved intronic sequence of the Plzf (Promyelocytic leukemia zinc finger protein) gene. In addition, Plzf is a prominent candidate gene for quantitative trait loci (QTLs) associated with cardiac hypertrophy and fibrosis in the spontaneously hypertensive rat (SHR). In the current study, we tested the effects of Plzf gene targeting in the SHR using TALENs (transcription activator-like effector nucleases). SHR ova were microinjected with constructs pTAL438/439 coding for a sequence-specific endonuclease that binds to target sequence in the first coding exon of the Plzf gene. Out of 43 animals born after microinjection, we detected a single male founder. Sequence analysis revealed a deletion of G that resulted in frame shift mutation starting in codon 31 and causing a premature stop codon at position of amino acid 58. The Plzftm1Ipcv allele is semi-lethal since approximately 95% of newborn homozygous animals died perinatally. All homozygous animals exhibited manifestations of a caudal regression syndrome including tail anomalies and serious size reduction and deformities of long bones, and oligo- or polydactyly on the hindlimbs. The heterozygous animals only exhibited the tail anomalies. Impaired development of the urinary tract was also revealed: one homozygous and one heterozygous rat exhibited a vesico-ureteric reflux with enormous dilatation of ureters and renal pelvis. In the homozygote, this was combined with a hypoplastic kidney. These results provide evidence for the important role of Plzf gene during development of the caudal part of a body-column vertebrae, hindlimbs and urinary system in the rat

    Stability of narrow beams in bulk Kerr-type nonlinear media

    Full text link
    We consider (2+1)-dimensional beams, whose transverse size may be comparable to or smaller than the carrier wavelength, on the basis of an extended version of the nonlinear Schr\"{o}dinger equation derived from the Maxwell`s equations. As this equation is very cumbersome, we also study, in parallel to it, its simplified version which keeps the most essential term: the term which accounts for the {\it nonlinear diffraction}. The full equation additionally includes terms generated by a deviation from the paraxial approximation and by a longitudinal electric-field component in the beam. Solitary-wave stationary solutions to both the full and simplified equations are found, treating the terms which modify the nonlinear Schr\"{o}dinger equation as perturbations. Within the framework of the perturbative approach, a conserved power of the beam is obtained in an explicit form. It is found that the nonlinear diffraction affects stationary beams much stronger than nonparaxiality and longitudinal field. Stability of the beams is directly tested by simulating the simplified equation, with initial configurations taken as predicted by the perturbation theory. The numerically generated solitary beams are always stable and never start to collapse, although they display periodic internal vibrations, whose amplitude decreases with the increase of the beam power.Comment: 7 pages, 6 figures Accepted for publication in PR

    Genetically Determined Folate Deficiency Is Associated With Abnormal Hepatic Folate Profiles in the Spontaneously Hypertensive Rat

    Get PDF
    Increased levels of plasma cysteine are associated with obesity and metabolic disturbances. Our recent genetic analyses in spontaneously hypertensive rats (SHR) revealed a mutated Folr1 (folate receptor 1) as the quantitative trait gene associated with diminished renal Folr1 expression, lower plasma folate levels, hypercysteinemia, hyperhomocysteinemia and metabolic disturbances. To further analyse the effects of the Folr1 gene expression on folate metabolism, we used mass spectrometry to quantify folate profiles in the plasma and liver of an SHR-1 congenic strain, with wild type Folr1 allele on the SHR genetic background, and compared them with the SHR strain. In the plasma, concentration of 5-methyltetrahydrofolate (5mTHF) was significantly higher in SHR-1 congenic rats compared to SHR (60±6 vs. 42±2 nmol/l, P<0.01) and 5mTHF monoglutamate was the predominant form in both strains (>99 % of total folate). In the liver, SHR-1 congenic rats showed a significantly increased level of 5mTHF and decreased concentrations of dihydrofolate (DHF), tetrahydrofolate (THF) and formyl-THF when compared to the SHR strain. We also analysed the extent of folate glutamylation in the liver. Compared with the SHR strain, congenic wild-type Folr1 rats had significantly higher levels of 5mTHF monoglutamate. On the other hand, 5mTHF penta- and hexaglutamates were significantly higher in SHR when compared to SHR-1 rats. This inverse relationship of rat hepatic folate polyglutamate chain length and folate sufficiency was also true for other folate species. These results strongly indicate that the whole body homeostasis of folates is substantially impaired in SHR rats compared to the SHR-1 congenic strain and might be contributing to the associated metabolic disturbances observed in our previous studies
    • …
    corecore