125 research outputs found

    Body composition in male elite athletes, comparison of bioelectrical impedance spectroscopy with dual energy X-ray absorptiometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to compare body composition results from bioelectrical spectroscopy (BIS) with results from dual energy X-ray absorptiometry (DXA) in a population of male elite athletes. Body composition was assessed using DXA (Lunar Prodigy, GE Lunar Corp., Madison, USA) and BIS (Hydra 4200, Xitron Technologies Inc, San Diego, California, USA) at the same occasion. Agreement between methods was assessed using paired t-tests and agreement-plots.</p> <p>Results</p> <p>Thirty-three male elite athletes (soccer and ice hockey) were included in the study. The results showed that BIS underestimates the proportion of fat mass by 4.6% points in the ice hockey players. In soccer players the BIS resulted in a lower mean fat mass by 1.1% points. Agreement between the methods at the individual level was highly variable.</p> <p>Conclusion</p> <p>Body composition results assessed by BIS in elite athletes should be interpreted with caution, especially in individual subjects. BIS may present values of fat mass that is either higher or lower than fat mass assessed by DXA, independent of true fat content of the individual.</p

    Once the shovel hits the ground : Evaluating the management of complex implementation processes of public-private partnership infrastructure projects with qualitative comparative analysis

    Get PDF
    Much attention is being paid to the planning of public-private partnership (PPP) infrastructure projects. The subsequent implementation phase – when the contract has been signed and the project ‘starts rolling’ – has received less attention. However, sound agreements and good intentions in project planning can easily fail in project implementation. Implementing PPP infrastructure projects is complex, but what does this complexity entail? How are projects managed, and how do public and private partners cooperate in implementation? What are effective management strategies to achieve satisfactory outcomes? This is the fi rst set of questions addressed in this thesis. Importantly, the complexity of PPP infrastructure development imposes requirements on the evaluation methods that can be applied for studying these questions. Evaluation methods that ignore complexity do not create a realistic understanding of PPP implementation processes, with the consequence that evaluations tell us little about what works and what does not, in which contexts, and why. This hampers learning from evaluations. What are the requirements for a complexity-informed evaluation method? And how does qualitative comparative analysis (QCA) meet these requirements? This is the second set of questions addressed in this thesis

    Complexity : the emerging science and the edge of order and chaos

    No full text
    381 p., ref. bib. : 2 p.1/2In a rented convent in Santa Fe, a revolution has been brewing. The activists are not anarchists, but rather Nobel Laureates in physics and economics such as Murray Gell-Mann and Kenneth Arrow, and pony-tailed graduate students, mathematicians, and computer scientists down from Los Alamos. They've formed an iconoclastic think tank called the Santa Fe Institute, and their radical idea is to create a new science called complexity. These mavericks from academe share a deep impatience with the kind of linear, reductionist thinking that has dominated science since the time of Newton. Instead, they are gathering novel ideas about interconnectedness, coevolution, chaos, structure, and order―and they're forging them into an entirely new, unified way of thinking about nature, human social behavior, life, and the universe itself. They want to know how a primordial soup of simple molecules managed to turn itself into the first living cell-and what the origin of life some four billion years ago can tell us about the process of technological innovation today. They want to know why ancient ecosystems often remained stable for millions of years, only to vanish in a geological instant―and what such events have to do with the sudden collapse of Soviet communism in the late 1980s. They want to know why the economy can behave in unpredictable ways that economists can't explain-and how the random process of Darwinian natural selection managed to produce such wonderfully intricate structures as the eye and the kidney. Above all, they want to know how the universe manages to bring forth complex structures such as galaxies, stars, planets, bacteria, plants, animals, and brains. There are common threads in all of these queries, and these Santa Fe scientists seek to understand them. Complexity is their story: the messy, funny, human story of how science really happens. Here is the tale of Brian Arthur, the Belfast-born economist who stubbornly pushed his theories of economic change in the face of hostile orthodoxy. Here, too, are the stories of Stuart Kauffman, the physician-turned-theorist whose most passionate desire has been to find the principles of evolutionary order and organization that Darwin never knew about; John Holland, the affable computer scientist who developed profoundly original theories of evolution and learning as he labored in obscurity for thirty years; Chris Langton, the one-time hippie whose close brush with death in a hang-glider accident inspired him to create the new field of artificial life; and Santa Fe Institute founder George Cowan, who worked a lifetime in the Los Alamos bomb laboratory, until-at age sixty―three―he set out to start a scientific revolution. Most of all, however, Complexity is the story of how these scientists and their colleagues have tried to forge what they like to call "the sciences of the twenty-first century."

    Complexity: the emerging science at the edge of order and chaos

    No full text
    Why did the stock market crash more than 500 points on a single Monday in 1987? Why do ancient species often remain stable in the fossil record for millions of years and then suddenly disappear? In a world where nice guys often finish last, why do humans value trust and cooperation? At first glance these questions don't appear to have anything in common, but in fact every one of these statements refers to a complex system. The science of complexity studies how single elements, such as a species or a stock, spontaneously organize into complicated structures like ecosystems and economies; stars become galaxies, and snowflakes avalanches almost as if these systems were obeying a hidden yearning for order. Drawing from diverse fields, scientific luminaries such as Nobel Laureates Murray Gell-Mann and Kenneth Arrow are studying complexity at a think tank called The Santa Fe Institute. The revolutionary new discoveries researchers have made there could change the face of every science from biology to cosmology to economics. M. Mitchell Waldrop's groundbreaking bestseller takes readers into the hearts and minds of these scientists to tell the story behind this scientific revolution as it unfolds

    脳型コンピューターへの道

    No full text
    corecore