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Abstract
Organizations are increasingly facedwith the challengeof architecting complex systems thatmust

operate within a System of Systems context. While network science has offered usefully clear

insights into product and system architectures, we seek to extend these approaches to evaluate

enterprise system architectures. Here, we explore the application of graph-theoretic methods

to the analysis of two real-world enterprise architectures (a military communications system

and a search and rescue system) and to assess the relative importance of different architecture

components. For both architectures, different topological measures of component significance

identify differing network vertices as important. From this, we identify several significant chal-

lenges a system architect needs to be cognisant of when employing graph-theoretic approaches

to evaluate architectures; finding suitable abstractions of heterogeneous architectural elements

and distinguishing between network-structural properties and system-functional properties.

These challenges are summarized as five guiding principles for utilizing network science concepts

for enterprise architecture evaluation.
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1 INTRODUCTION

Organizations are increasingly facedwith the challenge of architecting

and realising complex systems that must operate in the context of

a System of Systems (SoS), or architecting and realising an entire

SoS itself.1 The Engineering Systems community has championed the

importance of the architecture of an engineered system, in terms of

its influence on functional behavior and desirable properties, such

as robustness, flexibility, and resilience.2,3 Traditionally, architecting

approaches are reductionist in nature; seeking to decompose systems

into smaller, more manageable chunks that can be reassembled into

a whole with no adverse effects.4–9 When architecting a complex

system or complex SoS, such approaches are less likely to yield useful

insights into the System of Interest (SoI; the system whose life cycle

is under consideration10) due to a combination of significant system

scale and heterogeneity, a high degree of interconnectedness or

Abbreviations: SoS, System of Systems; SoI, System of Interest.
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interdependency within and between the component systems, and

the nonlinearity of these interdependencies.11 These properties can

combine to frustrate a divide-and-conquer approach that is typically

relied upon tomanage and design systems.

Recent efforts have sought to bring complexity science to bear on

systems engineering problems, for example, utilizing graph theory to

explore and characterize the complex network structure of intercon-

nectionsbetweenSoI entities,12–16 and consideringhowperturbations

to such networks may provide insights into architectural robustness

and flexibility.17 The contribution of this paper is in constructing

graphical models of two real-world SoS architectures directly from

Architecture Views (AVs) created in accordance with an Enterprise

ArchitectureFramework, using graph-theoretic analysis of these archi-

tectures to highlight challenges inherent to applying network science

models and methods to architectures of this kind, and deriving a set of

guiding principles to address these challenges. In doing so, it seeks to
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https://orcid.org/0000-0002-4266-0862
http://creativecommons.org/licenses/by/4.0/


2 POTTS ET AL.

contribute to a research agenda for the engineering of complex

systems laid down nearly a decade ago; “How can we better model,

visualize and understand networks of interdependencies, to achieve

insights on the likely consequences of variations and perturbations

(e.g., impact of changes to schedule or changes in performance of one

component on other parts of the enterprise)?”18

The paper is structured as follows. For the remainder of this section,

in order to avoid issues created by the ambiguity of key terms (eg,

systems architecting, complex system, and SoS), they are defined for

the purposes of this paper. Furthermore, in order to contextualize

the systems architecting challenge, typical questions that an orga-

nization would ask when architecting systems are discussed. Two

real-world use cases are then introduced; a generic Search and Rescue

architecture (SAR) and a tactical military communications enterprise

architecture (MComms). The theory supporting the assessments of

architectures using a network perspective is presented. The follow-

ing section presents a literature review of current graph-theoretic

approaches to assessing system architectures. Architecture topology

is then assessed for each of the two use cases. The discussion turns to

the challenges of adopting a network perspective to assess a complex

SoS architecture, highlighting the areas where care must be taken.

Finally, further work is detailed, five guiding principles are suggested,

and conclusions are drawn.

1.1 Definitions

Some of the terminology used thus far can be prone to ambiguity. The

purpose of this section is to make clear what each term means for the

purposes of this paper.

1.1.1 Complex system

The term complex system is poorly defined partly as a consequence of

the variety of uses towhich it is put. Various publications examinewhat

complexitymeans to a systems engineer.19–23 Complex systems can be

described in terms of dynamic complexity, that is, how a system evolves

or changes over time and the difficulty associated with predicting

behavior,24,25 or socio-political complexity, which is the complexity aris-

ing from human cognitive limits or frommultiple stakeholders exerting

different effects on a system.9,22 Alternatively, complex systems can

be described in terms of their structural complexity, which arises from

a combination of system scale, connectivity, and heterogeneity.21,22

The starting point for this manuscript is that a systems engineer

endeavoring to architect or design a complex system will initially

be concerned with more objective characterizations of structural

complexity and its relationship to system behavior, function, or perfor-

mance. Thus, a complex system, for the purposes of this manuscript,

is defined as a system formed of many interdependent components

which, as a consequence of the nonlinear character of these inter-

dependencies, has the capacity to exhibit emergence, implying that

overall system behavior cannot simply be inferred from the behavior

of system components.2,11,24,26–28

1.1.2 System of systems

The term SoS is also loaded with ambiguity. A recent review of per-

tinent publications on SoS Engineering29 identified the increasingly

rich descriptions and classifications used, and noted that authoritative

guidance and robust methodologies are still lacking for SoS Engineer-

ing. Early thinking by Maier30 defined an SoS as “an assemblage of

components with operational and managerial independence.”30 Maier

also postulated that the geographical distribution of a system’s parts

could be a contributory characteristic, but argued that geographical

distribution alone is not sufficient for a system to qualify as an SoS.

International standards do not providemuch clarity. The draft annex to

ISO/IEC/IEEE 15288, System Life Cycle Processes 2015,10 defines an

SoS as a “set of systems for a task that none of the systems can accom-

plish on its own,” echoing Maier’s description but adding the notion of

some emerging functionality that can only arise through the bringing

together of the constituent systems. This point is further reinforced by

Boardman and Sauser who set out five key characteristics of an SoS:

autonomy, belonging, connectivity, diversity, and emergence.31,32 The

defining separation between a system and an SoS is equivalent to the

separation between a component and a system of components—the

notion of emergent properties at the aggregate level that cannot

be attributed to their parts. Boardman and Sauser say it best: “The

distinction lies in themeaning and significance of ‘gathering together’ –

an SoS is much more because its parts, acting as autonomous systems,

forming their own connections and rejoicing in their diversity, lead to

enhanced emergence, something that fulfills capability demands that

set an SoS apart.”31 The draft ISO 21839, Systems of Systems Consid-

erations in Engineering of Systems 2017,33 similarly places emphasis

on emergence as a defining characteristic of an SoS; the emergence

of some new capability that none of the constituent systems have.

Alternative definitions assert that an SoS is deliberately brought

together for the purpose of a goal ,34 but this is problematic because

evidence for this may be limited (eg, the City of London is arguably an

SoS without a designer, purpose, or goal). The a priori existence of a

common goal also excludes an SoS for which multiple conflicting goals

can be identified, or for which a shared goal changes over time, or

only arises after the systems have been established. Other definitions

make explicit the evolving nature of the SoS in terms of new systems or

services35 or in terms of a lack of overall control of constituent system

development lifecycles.36 There are also disagreements concerning

where SoS engineering should focus, with some arguing that it is more

concerned with acquisition activity22,29,30,34,37–39 and others arguing

that it concerns technical engineering issues.32,36 The most widely

used definition remains that of Boardman and Sauser, which is used

in this paper alongside a stance that SoS engineering is concerned

with more than purely technical engineering issues, including political,

economic, social, and acquisition considerations.

1.1.3 System architecture

System architecture can be defined as “the embodiment of concept,

the allocation of physical/informational function to the elements of

form, and the definition of relationships among the [system] elements
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and [between a system and its] surrounding context.”40 Other views

of architecting suggest its role is as a precursor to engineering design

and that architecting largely defines the subsequent functionality of

the system.7,8 International standards and architecture frameworks

instead suggest a broader remit for systems architecting activity,

implying that it is conducted for anumberof purposes; including topro-

mote stakeholder understanding, to make design or investment deci-

sions, or to conduct capability analysis.41–47Within traditional lifecycle

models, it is the concept development stage that corresponds to most

systems architecting activity48 although clearly architectures may be

updated and serve a myriad of purposes, throughout a system’s lifecy-

cle. There are several architecture frameworks currently in use: “con-

ventions, principles and practices for the description of architectures

established within a specific domain of application.”45 Architecture

frameworks canbeused toguideanarchitect by creating several views,

or perspectives, on the SoI for this purpose, such as NATO Architec-

ture Framework (NAF)49 or Ministry of Defence Architecture Frame-

work (MODAF).41 This manuscript adopts a view of systems architect-

ing as activity conducted intensively toward the start of an SoI lifecycle

in order to support stakeholder understanding, investment decisions,

and design decisions that largely determine the subsequent function-

ality of the SoI. An architecture thus captures the concept, functions,

form, and relationships of the SoI in a format that can be used to enable

a shared understanding and support decisions about the SoI.

1.2 Context

With working definitions presented, our focus can turn to contex-

tualizing the problem of assessing complex SoS architectures. The

case studies analyzed below are used to exemplify the exploration of

complex SoS architecture evaluation. To contextualize the problem,

consider anorganization facedwith an InviteToTender for theupgrade

of a system that operates as part of an SoS. The upgraded system, the

SoI,maybe complex and the SoSofwhich it is partmay also be complex.

Several challenges are inherent to such a scenario; whether to bid for

deliveryof sucha system; howto characterizedesign challenges for the

SoI (eg, boundary definitions); how tomake good design decisions that

will determine the subsequent functionality of the SoI; and, potentially,

how to evaluate and select one of several candidate architectures. If an

organization utilizes systems thinking to assist in the characterization

of such challenges, they are likely to maintain a broad and diverse

perspective during the early phase design process.50–52 Thiswork aims

to explore the extent to which a graphical representation of an archi-

tecture can be useful in such a situation. The next section introduces

the real-world use cases considered in the remainder of the paper.

2 USE CASES

This work makes the use of two real-world enterprise architectures

originally created and validated by Thales, and chosen as repre-

sentative of real-world SoS architectures featuring a diversity of

entities and relationships. In both of the use cases described below,

the architecture is modeled as a directed, unweighted graph, where

architecture entities are represented as nodes (termed vertices)

connected by links (termed edges) representing of interdependencies

or relationships.53,54

2.1 Search and rescue generic architecture

Our first use case is an SAR NAF-based architecture, developed by

Thales in order to inform systems architecture training and help the

development of NAF v4.55 The SAR Use Case can be considered an

SoS; the overall ability to rapidly locate and recover distressed vessels

in changing and adverse environmental conditions depends on the abil-

ity of the diverse constituent systems, acting as autonomous agents,

to co-ordinate in order to fulfill a capability demand that none can

achieve alone. It is only in bringing together a diverse collection of sys-

tems that a timely and effective SAR operation can be conducted over

a large geographic area covering both maritime, coastal, and in-land

deployments.

A directed graph was constructed using several AVs from the SAR

architecture; capabilities, services, and logical nodes (from logical

views in NAF, not to be confused with nodes from graph theory) were

modeled as vertices with relationships between them modeled as

unweighted directed edges. Logical nodes include rotary and fixed

wing assets for recovery and search, SAR asset control, and places of

safety (eg, hospitals), and the relationships modeled include communi-

cation channels, taskings, and command and control. Services include

messaging services, recovery services, and situational awareness

services along with how the services contribute to each other and

depend on logical nodes. The capabilities include the capability to

detect, locate, recover, and communicate effectively and relationships

include how capabilities depend on each other, contribute to services,

and depend on logical nodes.

A table was created listing the ID and type of each architec-

tural entity involved in a set of AVs, and the source and target

entities involved in every relationship between these entities; the

AVs employed were: Architecture Concept Diagram, C1 Capability

Taxonomy, C3 Capability Dependencies, C1-S1 Capability to Service

Mapping, S1 Service Taxonomy, L1 Node Types, L2 Logical Scenario,

and L3 Node Interactions. It should be noted that the terms modeled

are not independent of each other. In NAF, services contribute to

capabilities, and capabilities are contributed to by nodes. SARpresents

significant challenges to an architect, for example, the heterogeneity

of entities (air, land, and maritime assets) and acquisition cycles, which

strain interoperability and intervention, compounded by geographical

and environmental challenges. The table of relationships, known as an

edge table, was imported into Gephi, which is an open source software

for exploring and manipulating networks and was used to visualize

the resulting network.56 Analysis of the network was undertaken by

importing the same edge table into Python and using the NetworkX

package to calculate various network metrics.57 Edge weights could

be added to model the relative importance of relationships and inter-

actions, with values taken from NAF AVs themselves (if explicitly rep-

resented there) or from expert opinion, for example, using some esti-

mate of system importance.58 However, in the absence of data on the
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relative significance of the relationships between architectural entities

represented by network edges, they were treated here as unweighted.

2.2 Tactical military communications enterprise

architecture

Our second use case is a tactical MComms, created in accordance

with the MODAF, to enable Thales and the customer to have a shared

understanding of the complex environment within which a tactical

military communications solution would have to interoperate. The

tactical military communications architecture describes the challenge

of enabling effective tactical communications between soldiers.

The tactical military communications enterprise architecture can be

considered to be an SoS; the overall ability for a soldier to be able

to communicate effectively (via voice and data, on a network with

sufficient security, availability, and integrity) with a range of other

actors in adverse environmental conditions (including adversarial

electronic counter measures) over a large and contested geographical

region depends on the ability of the diverse systems and agents that

make up the SoS, which form their own connections in order to fulfill

the capability demand that none can achieve alone. The MComms SoS

was brought together to enable secure and timely end-to-end com-

munications and information services between deployed soldiers and

other actors in the land environment on a geographically distributed

battle-field. Again, while several communication systems, services, and

software can fulfill parts of this purpose in isolation, it is only in the

joining together of several of these diverse elements that overall effec-

tive communications can be delivered to soldiers. Further, the joining

together of these systems is nontrivial (different technologies, pro-

cesses, agents, andpersonnel are challenging to integrate) and requires

an additional layer of management to form and sustain the overall SoS.

Several entities from the enterprise architecture were modeled;

Systems, Services, Functions, Artifacts (components), Software, and

Capability Configurations, which were modeled as vertices. Specif-

ically, from the following AVs, an edge table of relationships was

created and interrogated in the same way as for SAR use case; AV-1

Overview and Summary Information, StV-2 Capability Taxonomy,

StV-4 Capability Dependencies, SOV-1 Service Taxonomy, and SOV-5

Service Functionality.56,57 The relationships between these entities

weremodeled as unweighted directed network edges.

3 THEORY

This section introduces and defines the graph-theoretic topological

properties used to explore the SoS architectures. This section aims to

make these concepts and terms less opaque for systems engineerswho

may not be familiar with graph theory or network science concepts.

3.1 Vertex-level topological properties

A graph, G, is made up of vertices, V, some of which are connected by

edges, E, whereG = (V, E). Graphs can either be directed, where an edge
ij connects vertex i to vertex j, but not vice versa, or undirected where

edges are considered to be bi-directional connections. The degree

of a vertex is the number of edges incident to that vertex. A graph’s

average degree characterizes the connectivity of a typical vertex and

hence the average connectivity of the graph as a whole. The average

shortest path length (or characteristic path length), lG, of a graph G

is given below, where N = |V| is the number of vertices in G and d(i, j)
is the geodesic distance between nodes i and j, that is, the number

of edges in the shortest path between vertex i and vertex j, assuming

d(i, i) = 0 and d(i, j) = 0 if j cannot be reached from i:59

lG = 1
N ⋅ (N − 1)

⋅
∑
i≠j

d(i, j). (1)

The characteristic path length of a graph can be used to character-

ize efficient resource flow in the graph where a shorter average path

length indicates that resources, information, energy, and so on, can

flow through the network relatively easily.

The Clustering Coefficient of a graph, C, quantifies the probability

that vertices i and j are connected, given that i and j are both directly

connected to a shared neighbor vertex k. The Clustering Coefficient

can be calculated globally (for the whole graph) as the proportion of

connected triples in the graph that form two sides of a connected

triangle:

C = 3 × no. triangles
no. connected triples

. (2)

There are several approaches to identifying which entities in a

graph are the most “important,” with different approaches defining

the term “important” in different ways. This paper concentrates on

a few commonly used approaches. For a more detailed review of

topological measures of significance, the interested reader is directed

to Newman,59 Guzman et al.,60 and Scott.61

A simple approach to characterizing the importance of networked

entities is to simply consider the entity’s degree. Vertex degree could

be considered an indication of vertex importance in the sense that

highly connected entities have greater influence than those entities

that are less well connected. The in-degree of a vertex is defined as

the number of incoming connections incident on it, while out-degree is

defined as its number of outgoing edges. The In-Degree Centrality of

a vertex, i, is defined as the fraction of the graph’s vertices from which

edges arrive at i, whereas the Out-Degree Centrality of i is defined as

the fraction of the graph’s vertices to which edges depart from i, both

normalized with respect to the maximum possible degree in a simple

graph,N − 1.

TheClosenessCentrality of a vertex represents its average distance

to every other node in the network, measured in terms of shortest

paths. The Closeness Centrality, CC(i), of a vertex i is the reciprocal

of the sum of the shortest path distances from i to all other N − 1

vertices in the graph (3). A normalized version is used here to enable

the comparison between the use cases, which have a different number

of vertices, multiplying the Closeness Centrality by the sum of the
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minimum possible distances,N − 1:

CC(i) = N − 1∑
i d(i, j)

. (3)

Closeness Centrality is thus a measure of importance in terms of

which entities are the most central in the architecture, and conse-

quently closest to the other vertices. For a system architect, Closeness

Centrality could be used to identify entities in the architecture that, if

removed, would have a large impact on the average Closeness Central-

ity of the architecture, as a proxy for cohesiveness of the architecture.

As other authors have noted62, there are practical problemswith using

Closeness Centrality as a measure of vertex importance. Where no

path exists between two vertices, i and j, d(i, j) is undefined. Treating
the path length in such a case as zero artificially inflates the centrality

of i and j. Treating such a path length as effectively infinite prevents

the calculation of a defined value for Closeness Centrality for i and j.

For both of the architectures considered here, the directed nature of

network edges and the tree-like structure of (parts of) the networks

ensure that paths do not exist between many pairs of vertices. The

impact on the Closeness Centrality metric means that care must be

takenwhen using it as a proxy for vertex importance.

An alternative approach, recommended by Boldi and Vigna,

but rarely used within the systems community, is to use Harmonic

Closeness Centrality, which flips the sum and reciprocal terms from

Closeness Centrality, removing the impact of undefined path lengths

between vertices. The Harmonic Closeness Centrality, H(i), of a vertex
i is the sum of the reciprocal of the shortest path distances, d(i, .) from i

to all otherN − 1 vertices in the graph (where 1∕d(i, j) = 0 if there is no

path from i to j):

H(i) =
∑
j≠i

1
d(j, i)

. (4)

A similar approach to Closeness Centrality is to examine impor-

tance in terms of the change in the sum of distances between vertex

pairs, if the vertex in question were removed.63 The Closeness Vitality

of vertex i, CV(i), is calculated as the difference between the Wiener

Index (the sum of the lengths of the shortest paths between all pairs

of vertices, in effect the total shortest distance for graph G) of the

graph with vertex i removed, IW (G∖{i}), and the Wiener Index of the

graph without the vertex removed, IW (G). Important entities can thus

be identified as those whose removal would increase the geodesic

distance between vertices:

IW (G) =
N∑
i=1

N∑
j=1

d(i, j), (5)

CV(i) = IW (G) − IW (G∖{i}).

An alternative approach to considering importance as geometric

closeness is to consider importance to be associated with enabling

communication between many entities. The Betweenness Centrality,

BC(i), of a vertex i is the number of shortest paths in the graph that pass

through vertex i and is given below, where N is the set of vertices in

graph G, 𝜎(s, t) is the number of shortest paths between vertices s and

t, and 𝜎(s, t|i) is the number of those shortest paths that pass through

some vertex i:

BC(i) =
∑
s,t∈N

𝜎(s, t|i)
𝜎(s, t)

. (6)

A further approach to characterizing the importance of a ver-

tex, i, is to consider the well connectedness of its neighbors, which

involves considering the well connectedness of the neighbors of these

neighbors, and so on. How to calculate this recursive definition of

importance? Consider a population of random “walkers” traversing the

network. At each step, each walker picks a random edge leaving their

current vertex and follows that edge to anewvertex.Over time, the ini-

tially randomly distributed walkers will come to be distributed across

the network in a way that favors well-connected nodes, that is, those

that are adjacent to many well-connected nodes. The Eigenvector

Centrality, xi, of a vertex i captures this intuition, and is defined below:

xi =
1
𝜆

∑
j∈G

Ai,jxj, (7)

where A is the adjacency matrix of the graph G (the adjacency matrix

is a square matrix representing the graph G, where ai,j = 1 if vertex j is

connected to vertex i and ai,j = 0 otherwise) and 𝜆≠ 0 is a constant.

For an architect, the Eigenvector Centrality may be a more suitable

measure of importance of an entity in an architecture than simply

looking at degree since it highlights influential vertices in terms of their

location within the network. The directed acyclic nature of the net-

works used to represent the two use cases presents challenges in the

use of Eigenvector Centrality. Namely, vertices that have no in-coming

edges have a null Eigenvector Centrality score, as do vertices whose

only in-coming edges are fromnull scoring vertices. Katz Centrality is a

similar measure but that deals with this issue by allocating each vertex

an initial positive value of centrality. TheKatz Centrality for vertex i is

xi = 𝛼
∑
j∈G

Ai,jxj + 𝛽 , (8)

where A is again the adjacency matrix of the graph Gwith eigenvalues

𝜆, with parameter 𝛽 controlling the initial centrality.

There are several othermeasures related to Eigenvector Centrality,

such as Google’s PageRank measure, which identifies important web

pages and Hyperlink-Induced Topic Search (HITS) hub and authority

score, but these are not discussed in detail here. Instead, an interested

reader is directed to Newman.64

3.2 Graph-level topological properties

Further topological measures of significance can be explored at the

graph level (corresponding to the level of the SoS as a whole). The first

is the density,D, of the directed graph,

D = |E|
N(N − 1)

, (9)

where |E| is thenumber of edges in the graphandN = |V| is thenumber

of vertices in the graph.
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Density is a simple measure of how densely connected the directed

graph is, where a value of D = 1 corresponds to a graph for which

every possible connection between vertices is present. Density con-

siderations could be useful in evaluating two competing complex SoS

architectures as a higher density solution may have a greater integra-

tion challenge, or a greater dependency management challenge, but

could, perhaps, enjoy greater resiliency.

Another SoS-level analysis involves considering a directed graph’s

strongly connected components. A strongly connected component is

a set of a graph’s vertices where, for every pair of vertices, i and j, in

the component, there exists a path from i to j and a path from j to i.65

In other words, if every vertex in a component is reachable from every

other vertex, it is strongly connected. Determining a graph’s strongly

connected components can reveal a core and periphery structure in

a directed graph. This may assist the overall understanding of an SoS,

helping identify how subsystems interact with one another. The iden-

tification of strongly connected components may also help identify

where to apportion responsibility, boundaries, or internal and external

dependencies. This approachhas thepotential to identify a setof nodes

as making up a network’s core or periphery. It contrasts with node-

level analyses that attempt to identify core nodes or peripheral nodes

based on their individual properties (eg, somemeasure of centrality).66

A similar idea to the identification of strongly connected compo-

nents is the identification of communities within a graph. A community

may be described as a set of vertices that are more strongly or more

frequently connected to each other than to other vertices in the net-

work. There are numerous algorithms and approaches to community

detection and the interested reader is directed to Fortunato67. For

the complex SoS architectures explored here, it could be important

for an architect to identify communities in order to partition the

SoS into subsystems. The “modularity of the partition,” Q, has been

suggested as a measure of how good a particular division of a network

into communities is.68–70 Q is defined as the fraction of edges that fall

within the identified communities, minus the expected value of the

same quantity if the edges were randomly assigned. Thus, a particular

identified community structure can be evaluated as significant if

there are more within-community edges than would be expected by

random chance, corresponding to a nonzeroQ. A value ofQ = 0 would

correspond to a partitioning with no more significant community

structure than would be expected at random. To calculate Q, first

calculate the fraction of the edges in the network that each connects a

pair of vertices from the same community,

Fraction of Edges =
∑

ij Ai,j𝛿(ci, cj)
E

, (10)

where 𝛿(ci, cj) is 1 if ci = cj and 0 otherwise and the number of edges

in the network is E. By randomly rewiring the network, but preserving

the degrees of vertices, the probability of an edge existing from i to j is

kin
i
kout
j

∕E, where kin
i
is the in-degree of i, kout

j
is the out-degree of j, and

E is again the total number of edges in the network.Q is then given by

Q = 1
E

∑
ij

⎡⎢⎢⎣
Ai,j −

kin
i
kout
j

E

⎤⎥⎥⎦
𝛿(ci, cj). (11)

We have presented several vertex-level and graph-level properties

that can be used to quantify the importance of an entity or set of enti-

ties in a complex SoS architecture. However, each focuses on different

interpretations of how importance manifests itself. Clearly, some

of these properties will be more suited to some architectures than

others, but the point here is that care must be taken to understand

what the propertymeans in the context of the system or SoSwhen it is

modeled as a graph. A brief summary of the concepts discussed in this

section is shown in Table 1.

4 APPLYING NETWORK SCIENCE TO

SYSTEMS ENGINEERING

The notion of applying network science to enterprise architectures is

not new,with several authors noting that pertinent aspects of anenter-

prise can be represented as a complex network of relationships and

dependencies across multiple components and thus can be analyzed

using network science approaches. A literature survey is provided

by Santana et al.71 Network analysis on enterprise architectures has

used centrality measures, such as Betweenness Centrality and Eigen-

vector Centrality to identify which components are most important

to the overall architecture in terms of their relationships.71–74 There

appears to be no agreement in the literature about which aspects of an

enterprise should be captured within an enterprise architecture, nor

is there agreement on how such an architecture can be modeled from

a network perspective—indeed, this is identified as an open research

question.71

Similarly, graphicalmodels have also been suggested as an approach

to assess SoS architectures in a quantitative manner75, where archi-

tectures could be evaluated in the early phase of their design for

their ability to meet mission goals. The work has resulted in a recom-

mended methodology that uses mission goals to represent resources,

operations, stakeholders, and policies relevant to an SoS and assigns

these mission goals to mission threads (suggested to be represented

as sequence diagrams), which can be used to evaluate the ability of

different architectures to meet the mission goals. The methodology

recommends developing executable architectures that can be tested

for their ability to meet the mission goals before a commitment is

made to the engineering design of the SoS architecture. The authors

stop short of detailing how the graphical models can be constructed

for architectures; however, and the focus is instead on a framework to

be fleshed out later with further use cases.

Such work often seeks to build on the success of network

approaches to representing large-scale design products, engineering

products, and engineering projects.76–80 A range of network science

techniques have been used, including inter alia, explorations of edge

density, clustering coefficients, and assortativity. Similarly, Design

Structure Matrices (DSMs) are frequently used in the product and

engineering design community and also provide a means of repre-

senting a system as a network, allowing network science concepts,

including measures of system complexity or evaluations of system

modularity to be applied.81–83
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TABLE 1 Summary of network concepts

Network concept Description

Characteristic Path Length The length of the shortest path between two nodes, or average of all such lengths for a graph. Characterizes
efficient resource flow in a graphwhere a shorter average path length indicates that resources can flow
through the network relatively easily.

Clustering Coefficient Quantifies the probability that two vertices are connected, given that they are both directly connected to a
shared neighbor.

Degree Centrality The degree centrality for a vertex is the fraction of a network’s nodes that it is connected to.

Closeness Centrality Closeness Centrality of a vertex represents its average distance to every other node in the network,
measured in terms of shortest paths. Measure of importance in terms of which entities are themost central
in the architecture, and consequently closest to the other vertices.

Harmonic Closeness Centrality Harmonic Closeness Centrality removes the impact of undefined path lengths between vertices that can
hinder the use of Closeness Centrality by taking the sum of the reciprocal of the shortest path distances.

Closeness Vitality Impact of removing a node on a network’s characteristic path length.

Betweenness Centrality The Betweenness Centrality of a vertex is the proportion of shortest paths in the graph that pass through the
given vertex. Important entities are those that enable connectivity betweenmany entities.

Eigenvector Centrality Eigenvector Centrality suggests influential vertices in terms of their locationwithin the network, where
influential vertices are those that are adjacent tomanywell-connected nodes.

Katz Centrality Similar to Eigenvector Centrality but by assigning each vertex an initial value of centrality, the issue of
vertices that have no in-coming edges have a null Eigenvector Centrality score, as do vertices whose only
in-coming edges are from null scoring vertices, is removed.

Density Proportion of pairs of network nodes that are connected. Could assist in evaluating competing architectures
as a higher density solutionmay have a greater integration challenge, or a greater dependency
management challenge, but conversely could enjoy greater resiliency.

Strongly Connected Components If every vertex in a set of vertices is reachable from every other vertex in the set, the set is a strongly
connected component. Strongly connected componentsmay reveal a core and periphery structure in a
directed graph.

Community Structure A community can be described as a set of vertices that aremore strongly, or more frequently, connected to
each other than to other vertices in the network. There are several algorithms for community detection.

Alternative frameworks exist within systems engineering to model

a complex system as a graph and are centered on extensions of DSM

and Domain Mapping Matrices (DMM), which are used together

to create an Engineering System Matrix (ESM).13,84 In an ESM, a

graphical model of a system is created by modeling system elements

(which include system drivers, stakeholders, objectives, functions,

objects, and activities) as vertices and the relationships between them

as edges. The ESM approach also includes modeling of the temporal

domain through the inclusion ofwhich entities and relationships “exist”

at various time steps. The ESM approach explores several topological

metrics of the resulting graph in an effort to characterize a complex

system in order to support decisions, such as where to exert influence

in the system to make the most improvements or to determine which

parts of the system are more important than others. The author high-

lights challenges in the collection and the mapping of the data in order

to construct a graphical model of the project (eg, relying on qualitative

interviews to establish relationships between some entities). Several

topological assessments were made from the resulting graph at differ-

ent times; number of vertices, number of edges, average degree, aver-

age path length, and clustering coefficient. What the number of ver-

tices and edges tell an observer about a systems engineering project is

not explored. The work uses average shortest path length to suggest a

means to select candidate system configurations, considering a system

with a shorter average path length to be potentially more desirable.

The ESM has been used to model a malaria surveillance SoS as

a graph. The subsequent graph has then been analyzed to attempt

to determine the most influential constituent systems in an effort

to aid decisions around investment of effort.16,85 The process and

architecture domains of a healthcare SoS were modeled, using a

weighted DSM for the system components, a weighted DMM for the

processes, and captured dependencies between the two for an overall

DSM. The influence of each constituent system is given by the product

of three variables; an environmental risk factor, the sum of weights

for the processes that the constituent system contributes to, and an

architecture attribute. The architecture attribute could be given by

a common centrality measure, such as Betweenness, Closeness, or

Eigenvector Centrality taken from the graphical model created using

the adjacency matrix of the overall DSM. In the health surveillance

SoS, there was little agreement between the different architecture

attributes (Closeness, Betweenness, and Eigenvector Centrality) and

the authors stopped short of providing guidance over which attributes

should be used in different scenarios. The results of the analysis on

the surveillance SoS16,85 suggested that intervention efforts should be

centered around a small number of constituent systems as these have

a significantly greater influence in the overall SoS than others.

Graph-theoretic approaches have also been used to identify

potential bottlenecks in an SoS.15 In this work, a fictitious, simple

manufacturing SoS is modeled graphically, where suppliers, manufac-

turing plants, testing centers, and customers are modeled as vertices

with edges connecting them representing a flow of resource. The

author assigns arbitrary weights to the edges, which could represent

logistic costs, and determined where bottlenecks exist and what the
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maximum performance of the manufacturing SoS could be. The use

of such an approach requires that the problem at hand is concerned

with throughput and that the complex system or SoS architecture can

be adequately modeled as a network that transports some resource

from a source to a sink. Although the example used for a complex SoS

architecture is a simplified manufacturing network, the justification

that such a system is an SoS is not provided, nor is it determined how

well a typical SoS can be modeled as a network with resources passed

between sources and sinks. The work does highlight that there is

potentially a wealth of theorems within graph theory that could assist

the architecting of a complex SoS.

This paper starts from a different modeling perspective to thework

above. Instead of using a DSM orMDM, or creating a new application-

specific abstraction based on system entities, a graphical model is con-

structed directly from AVs created in accordance with an Enterprise

Architecture Framework. Rather than analyzing synthetic architec-

tures, this work uses two real-world architecture products. Our work

explores the extent to which themetrics andmethods described in the

sections above can be usefully exploited in each case and highlights

the challenges inherent with taking such an approach. We summarize

our findings by suggesting five guiding principles for the effective

mobilization of networks concepts for complex SoS architectures.

5 RESULTS

5.1 Vertex-level topological properties results

From the edge tables created for each use case architecture described

in Section 2, we calculate a range of network metrics. First, we employ

several different topological measures of significance with the aim of

identifying which entities in each use case architecture are the most

important or influential. The results reveal little agreement between

the centrality measures regarding which entities are identified as the

most important. Themost commonly usedmeasure from the literature

surveyed is Closeness Centrality, and Figure 1 shows the lack of signif-

icant correlation between Closeness Centrality and other topological

measures of significance, demonstrating that different measures

identify different competing nodes asmost influential.Within both the

SAR andMComms architecture, there are several vertices that appear

to be important in terms of Closeness Centrality but which score

zero or very low by other measures, such as Betweeness Centrality

or Eigenvector Centrality. The converse is also true, where for both

architectures some of the entities identified as the most important

or influential by Eigenvector Centrality or Degree Centrality have a

very low or zero Closeness Centrality. These concepts do not provide

a consensus on which architectural entities are the most important

or influential in an architecture, as importance or influence is treated

different by eachmeasure.

To examine the level of agreement between the various concepts,

every correlation between the topological measures of signifi-

cance was calculated for both architectures (Table 2). Although the

results show some similarity between specific measures (noting that

Betweenness and LoadCentrality are different implementations of the

same measure, while Katz Centrality is directly related to Eigenvector

Centrality), they also indicate the lack of significant correlations

between others for both architectures. The only significant correlation

for both architectures is between Harmonic Closeness Centrality and

Eigenvector Centrality/Katz Centrality and between Closeness Vital-

ity andBetweenness Centrality. Amore detailed survey of correlations

between topological measures of significance in published work

has been conducted before,86 but the results found here show less

significant correlations, albeit with relatively small networks. None of

the topological measures of significance considered here strongly cor-

relate with Closeness Centrality and there is little agreement between

topological measures of significance, which seek to determine which

entities are the most important. Despite these measures employing

similar concepts, such as geometric distance and connectivity, the lack

of significant correlations suggests that caution must be exercised

in their use to determine which architectural entities are the most

important or influential. For example, Closeness Centrality, Harmonic

Closeness Centrality, andCloseness Vitality all consider an entity to be

important if it is geometrically close tomanyother entities, yet for both

architectures there are no significant correlations between these con-

cepts. Similarly, Betweenness Centrality and Eigenvector Centrality

both consider an entity to be important if it contributes to connectivity

across a graph, yet again for both architectures there are no significant

correlations between these concepts.While both architectures exhibit

a significant correlation between Closeness Vitality and Betweenness

Centrality, and Harmonic Closeness Centrality and Eigenvector Cen-

trality, the lackof correlationsbetweenother similarmeasures reduces

confidence that either of these concepts convincingly identify themost

important entities. Overall, trying to determine which architectural

entities are the most important for each architecture is inconclusive,

largely due to the nuanced assumptions underpinning each particular

measure. This point is discussed further in the next section.

5.2 Graph-level topological properties results

At amore aggregate level of consideration, the edge density for each of

the two architectures is calculated and is shown in Table 3. It is possible

to compare the density values of two competing architectures in order

to gain an idea of the likely integration, interface, and dependency

management challenges associated with an architecture solution as

part of an architecture evaluation process. Here, we see that while

both architectures do not exhibit a high density of connections com-

paredwith a complete graph, the SARarchitecture is nearly an order of

magnitude more connected than the MComms architecture, demon-

strating greater interconnectivity between architectural entities

for SAR.

The two use case architectures are then visualized. Figures 2 and

3 show each architecture as a directed graph, with vertices colored

first by entity type (eg, whether the nodes represent capabilities,

services, or operational nodes for the SAR use case, or services,

functions, systems, etc, in the MComms use case) and then by

community membership (discussed below; where each identified

community is colored separately). The networks are visualized using

Fruchterman-Reingold’s Force Directed Layout (an algorithm that
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F IGURE 1 Scatter plots of Closeness Centrality (horizontal axis) against other topological measures of significance for the SAR (top six) and
MComms (bottom six) use cases. Note that Load Centrality is a different algorithmic implementation for Betweenness Centrality, hence the
similarity in these plots. Different measures identify different nodes as most influential. Different topological measures of significance identify
different competing nodes asmost influential. Similar variation was found for the followingmeasures but are not shown; Harmonic Closeness
Centrality, PageRank, HITS Hub, andHITS Authority

simulates the graph as a physical system, assigning forces to edges

and nodes, where every node repels every node, but connected

nodes attract each other, calculating the summed forces acting on

the nodes and then moving nodes on a 2-D plane accordingly, seek-

ing equilibrium).56,87 Isolated vertices, or at least those with little

connectivity are therefore pushed to the outer perimeter of the

network, while vertices with high mutual connectivity are clustered

together. Vertices are sized by their degree to indicate the vertices

with the highest connectivity. Edges are colored by their destination

vertex color. The density differences from Table 3 are apparent in

Figures 2 and 3 and while a direct comparison between these two

architectures is not appropriate, one can imagine comparing two

competing architectures or architectural configurations within the

same use case scenario to compare their complexity (simply in terms

of the interconnectedness of each architecture).

The MComms architecture (Figure 2) has several vertices, which

are unconnected, several of which represent functions. Interestingly,

functional entities are also some of the highest connected vertices,

suggesting that some isolated vertices represent functions that

may not have been fully considered in the original architecture.

The MComms architecture shows which systems interact, which

systems provide functionality, which software they use, and how they
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TABLE 2 Table of Pearson’s correlation coefficients (R2) between centrality measures for two use cases: SAR (d.f.=39) (below the leading
diagonal) andMComms (d.f.=233) (above the leading diagonal)

Degree
Centrality

Closeness
Centrality

Harmonic
Closeness
Centrality

Closeness
Vitality

Betweenness
Centrality

Load
Centrality

Eigenvector
Centrality

Katz
Centrality

Degree Centrality – 0.443*** 0.139*** 0.205*** 0.277*** 0.274*** 0.208*** 0.167***

Closeness Centrality 0.034 – 0.000 0.454*** 0.377*** 0.375*** 0.007 0.001

Harmonic Closeness Centrality 0.335*** 0.239** – 0.030** 0.013*** 0.013*** 0.802*** 0.833***

Closeness Vitality 0.145* 0.181** 0.025 – 0.897*** 0.897*** 0.068*** 0.032**

Betweenness Centrality 0.356*** 0.183** 0.041 0.863*** – 1.000*** 0.044** 0.020*

Load Centrality 0.356*** 0.183** 0.041 0.863*** 1.000*** – 0.044** 0.019*

Eigenvector Centrality 0.491*** 0.066 0.631*** 0.002 0.041 0.041 – 0.817***

Katz Centrality 0.607*** 0.131* 0.720*** 0.006 0.064 0.064 0.832*** –

Note: *P < .05, **P < .01, and ***P < .001, otherwise R2 values are not significant.

TABLE 3 Edge density for two use case architecture networks

Property SAR MComms

Number of vertices,N 41 122

Number of edges, E 235 475

Density,D = E∕N(N − 1) 0.074 0.009

contribute to capability. For the MComms use case, an architect may

be specifically interested in the three systems with the largest degree

as they appear central to enabling capability through functions and

services. As expected, these three systems correspond to a secure

deployable broadband voice, data, and video communications system,

a secure deployable tactical radio system and more interestingly, a

system for interfacing between the tactical radio system and other

deployable systems, suggesting that these three systems are central

to the SoS capability. The SAR architecture appears to be largely hier-

archical (Figure 3) with entities tending to connect to other entities of

the same type. In the SAR use case, an architect may again be specifi-

cally interested in the high degree vertices or perhaps where entities

are connected to those of a different kind. We discuss challenges with

the visual interpretations of networks in the next section.

A community detection algorithm is then used to identify com-

munity structure within each architecture, potentially offering an

alternative perspective on its structure or modularity. Several algo-

rithms are available to detect communities within a network, where

a community is a grouping of vertices that have particularly strong

F IGURE 2 Network diagrams representing theMilitary Communications (MComms) use case. A node’s size is proportional to its degree. A
node’s color represents entity type (left, shown in legend) or community membership (right, each color represents a detected community).
Networks visualized using Gephi, an open source software for exploring andmanipulating networks
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F IGURE 3 Network diagrams representing the Search and Rescue (SAR) use case. A node’s size is proportional to its degree. A node’s color
represents entity type (left, shown in legend) or communitymembership (right, each color represents a detected community). Networks visualized
using Gephi, an open source software for exploring andmanipulating networks

connectivity to each other but relatively weak connectivity to vertices

outside the group. Here, Blondel et al.’s algorithm88 was used to deter-

mine communities of vertices in each of the two use case networks.

Applying the community detection algorithm to a complex SoS

architecture provides an approach to partitioning the architecture

into functional units (although it should be noted that the MComms

architecture includes 32 isolated vertices, each comprising an indi-

vidual “community”). The SAR architecture was partitioned into five

communities, and the MComms architecture was partitioned into

nine nontrivial communities, both with an uneven distribution of node

types. A visual interpretation of the MComms architecture suggests

some potentially interesting groupings of architectural entities. One

such relevant community is the grouping of software and functions

(originally distributed among the purple and green vertices on the left

hand side of Figure 2) and another is the collection of the high-degree

systemdiscussed earlier (the secure deployable broadband voice, data,

and video communications system) grouped together with several

functions, capabilities, artifacts, and a service (shown in the teal com-

munity in Figure 2). This teal community supports the earlier visual

interpretation of this system as a potential particular area of focus for

this architecture. Interestingly, this system is grouped with a range of

entitiesmoreoperational innature than technical communications. For

the SAR use case, consider the orange community detected (Figure 3),

which suggests the Communication Service, Boat Service, Distress

Monitoring Capability, Inform Capability, Communications Capability,

and SAR Asset Controller Node could be considered as one grouping

of related aspects. Logically, this makes sense, as the SAR Asset

Controller Node is an extensive communication services consumer

and is integral to monitoring and informing others of distress signals.

This appears tomake sense, andmay be something that is neglected or

overlooked in a “divide and conquer” approach to systemdevelopment.

However, as we discuss later, this assessment requires some caution.

Next, we examine the strength of the communities detected within

each use case, using Q, the modularity of the partition. For SAR, Q =
0.422 and for MComms, Q = 0.544, suggesting that the communities

detected within both architectures are more significant than would be

expected at random (values over 0.3 are typically taken to be signif-

icant in the literature). One could therefore argue that the nontrivial

communities detected within each architecture offer an alterna-

tive approach to partitioning or grouping entities, which as shown in

Figures 2 and3, does not correspondwith the architectural entity type.

The strongly connected components within each architecture are

then calculated. A network perspective can enable the identification of

the core and periphery of the architecture by examining the strongly

connected components of the graph. While this analysis suggests

a clear core and periphery structure for the SAR architecture, this

structure is not present in theMComms architecture. For the SAR use

case, the largest strongly connected component includes 22% of all

the vertices, with a second, smaller, strongly connected component

accounting for 17% of the total entities. Thus, the SAR architecture

could be partitioned into a core of two separate components that

together account for over one third of the architectural entities.

For the MComms use case, however, there are only three nontrivial

strongly connected components, the largest of which contains just 4%

of the architectural entities. Combining all three strongly connected

components only accounts for 6% of the architectural entities. Note

that the reason that the strongly connected components are not larger

in theMComms use case is related to the “tree-like” (relatively acyclic)
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nature of the network and, consequently, the many instances in which

a pair of vertices are only connected in one direction.

6 DISCUSSION

There is potential for the results of graph-theoretic analysis to be

misinterpreted due to the nuanced nature of the modeling choices

used to create a graph from an architecture, where care must be taken

with network concepts. Although it may be tempting to use network

measures, such as Closeness Centrality, to identify the seeminglymost

important or influential entities in an architecture, we have seen the

lack of significant correlations between such measures. Consider an

SoS represented by a directed graph for which there is no single large

connected component. The theory section noted that Eigenvector

Centrality can struggle to accurately reflect the importance of various

architectural entities if they are in a directed acyclic graph, as with

the two use case architectures here. Although in this work it is found

that Katz Centrality strongly correlates with Eigenvector Centrality

(Table 2), there remains potential to be misled if unsuitable network

metrics are used. Further, what are the implications of choosing

between twomeasures of centrality: Closeness Centrality treats a pair

of nodes that are not connected by a valid path as equivalent to a pair

of nodes connected by a path of length zero; conversely, Harmonic

Closeness Centrality addresses this issue by treating a pair of nodes

that are not connected by a valid path as being separated by an infinite

distance. Choosing between these two measures in an informed way

requires understanding the implication of network fragmentation

for the functionality of the SoI. Effectively, one measure answers the

question: “How central is a node within its own network component?,”

while the other answers a different question: “Towhat degree is a node

central to the network as a whole?” Where a network is fragmented

into different sized components, themeasures behave differently.

As a further example, consider Betweenness Centrality, which

might be employed to identify important vertices in a network by

quantifying their role in allowing influence to flow between different

parts of the network. Crucially, Betweenness Centrality assumes that

edges are more important in a network when they have more poten-

tial to allow novel information to propagate through the network.

Determining whether such an assumption holds for (some part of) a

complex SoS architecture is not straightforward and the answer may

be specific to a particular use case or even part of that use case (eg, in

the case where one part of the architecture concerns physical assets

organized in a communication network, while another part concerns

overall management or administrative functions).

Although visualizing and examining the structure of these complex

architectures, in terms of their connectivity, may uncover patterns

that help architects to understand how their SoS operates, or how

they may be able to leverage interventions into their SoS, it is again

an area where care must be taken. Even a simple visual interpretation

of networks can be misleading, with different layout algorithms telling

different visual stories that can be interpreted in different ways by dif-

ferent stakeholders, a challenge further magnified by the plethora of

algorithms available for graph visualization.89 The analysis used here

deals with a static view of the system based on an enterprise architec-

ture. In taking a static representationof theSoI, it is difficult to examine

if any emergent properties will be present in the SoI, and future work

should investigate how a network perspective could inform or predict

the presence of this property bymoving toward dynamic analysis.

Network approaches are also available to offer alternative parti-

tions of a system architecture using community detection algorithms.

However, the modularity of such a partition, to evaluate the presence

of this structure, does not evaluate how “correct” or “useful” the

suggested communities are. To do so, a qualitative assessment of

the communities detected is required. For both architectures, not

all identified communities make sense from the perspective of an

architect seeking a useful partitioning of functional units. While an

identified community within the SAR architecture that includes all of

the Command and Control (C2) functionality (the C2 capabilities and

the tactical C2 operational node) along with the co-ordination service

(the teal community in Figure 3) might seem sensible, an identified

community within the MComms architecture that includes several

external systems and seemingly unrelated artifacts and capabilities

is harder to interpret, requiring considerable further effort. In line

with typical networks analyses, the modeling approach used here

does not distinguish between different kinds of energy, information,

or material flows present in an architecture. Instead, any such flow

is represented as an edge between two vertices. As a consequence,

the detection of communities or strongly connected components

within a network is not necessarily sensitive to variation in either the

character of the nodes themselves or the relationships between them.

Finally, the suggestion of a “core” and “periphery” structure within the

networkmodel is dependent upon themodeling choices used to create

the network model from the architecture and also on our definition

of a “core” in terms of strongly connected components, which may

neglect more contextually significant indications of architecture

structure.

That the two use cases considered here are each a complex SoS

presents a compounding challenge arising from the diversity of stake-

holders that are likely to interact with the architectures. The architec-

tures are likely to be interpreted and perceived in different ways by a

diverse stakeholder community, including potential customers. Such

diverse stakeholders are unlikely to have the same consideration of

what makes an architectural entity important, influential, or a valid

member of some “community” or partition. Beyond the conceptual

problems outlined above, amore practical challenge involves acquiring

and interpreting sufficient information to build an effective network

model, especially at the start of a system lifecycle where confidence

in such information may be limited. Determining what features of a

complex SoS architecture constitute a vertex or an edge and what

determines if a vertex or edge is present requires careful consideration

andmay be time intensive and context dependent.

The next section proposes further work intended to progress the

ability of system architects to make the use of network approaches in

the face of the issues described here.
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7 FURTHER WORK

Edge weights and further vertex properties could be added in order

to model the differences between different types of network entities

and between different types of relationships between these entities

or to distinguish the differing importance of interactions or entities

within the architecture. If edgeweights were included in themodeling,

a network perspective could enable the exploration of resource flow

challenges through the architecture, whether material, information,

or energy, by including resource constraints as edge weights. Such an

analysis may assist in identifying bottlenecks or entities that provide

redundancy. Analysis of this kind may support the evaluation of

architecture alternatives or different architecture configurations.

One can imagine for the SAR use case evaluating alternative archi-

tecture configurations by considering “what if” scenarios for different

communication equipment deployments on distressed vessels and res-

cue vessels, using edge weights to represent delay, cost, or bandwidth

constraints between equipment. In this way, an architect can explore

if some architecture configurations have bottlenecks, not just in the

communications network, but in the overall system, by considering

information flow from the distress vessel to the co-ordination service

operator in accordance with a relevant mission thread. However,

correctly modeling the information within an architecture as edge

weights underpins the utility of such an analysis, and was thus not

pursued in this work that sought to bring to light the challenges in

taking a network perspective on an architecture created using an

architecture framework.

Similarly, for the MComms use case, one can imagine supporting

a trade off analysis again examining bottlenecks in fulfilling capa-

bility requirements with current systems by including edge weights

representing resource constrains, such as bandwidth and security

classification between different software, services, and systems, in

order to help the customer and potential suppliers understand where

intervention efforts may bemost useful. Edgeweights may also enable

more confidence to be placed in assessments of which entities in an

architecture aremost important, by including a greater level of fidelity

in assessment of “closeness.”

Further work could explore which views from architecture frame-

works are more amenable to network analysis and thereby provide a

methodology for more effective modeling of system architectures as

graphical models. Knowing which AVs are more amenable to network

analysis would also help identify which network metrics and concepts

are most suitable for identifying where interventions should be

focused in an SoS. Several AVs within DoDAF (which has been widely

utilized by practitioners and academia) appear amenable to network

analysis, such as the capability, services, and operational viewpoints.42

A further study could therefore specifically explore the extent to

which a network perspective on these AVs can provide meaningful

insights into the entire architecture, or at least how the analysis can be

usefully bound to those AVs.

Network perspectives suggest examining whether a “core” and

“periphery” structure exists and further work should seek to identify

exactly what constitutes a “core” of an architecture in a real SoS. A

network perspective may also suggest asking questions that address

notions of dynamic complexity, such as: “what is the effect of the

removal of some of these entities, whether as a single change or as

some kind of dynamic cascade effect?” It should also be noted, how-

ever, that if an architecture teamwanted tomodel their architecture as

a network and examine the effect of vertex removal or of some change

cascading through the network, they would need to conduct some

validation activity in order to be confident that the model captures

the important characteristics and dynamics of their architecture. One

pressing question concerns how such validation might be carried

out at early design stage. Given that the literature defining the SoS

concept makes considerable use of the notion of emergent SoS-level

behavior or functionality, further work should also examine whether

emergent properties of an SoS can be characterized or informed by

taking a network perspective on complex SoS architectures.

Graph-theoretic approaches to SoS architectures can explore how

the architectures, and their subsequent graphical models, evolve over

time to explore dynamics of SoS evolution. However, this requires

appropriate supporting data, for example, changes in connectivity and

performance over time, which may be difficult to obtain. There are a

range of tools available from the study of complex networks, which

may provide further insights into complex SoS architectures, such as

considerations of the homophily of the architectural elements, that is,

the tendency for similar architectural elements to be connected, which

may supply insights into design strategies for interfaces within a com-

plex SoS. The application of a network perspective on other aspects

of complex systems engineering, such as requirements analysis, could

also be explored.

The next section summarizes the work in this paper into guidelines

for the effective mobilization of network concepts for the evalu-

ation of complex SoS architectures created in accordance with an

Architecture Framework.

8 CANDIDATE GUIDING PRINCIPLES FOR

THE APPLICATION OF NETWORK

CONCEPTS TO COMPLEX SOS

ARCHITECTURE EVALUATION

1. Partition architectures to manage heterogeneity. The interpreta-

tion of network concepts and measures is considerably less con-

ceptually challenging if the aspects of the architecture that are

modeled aremorehomogenous.Graph-theoreticmodels can strug-

gle to represent adequately the heterogeneity of entities and rela-

tionships present in a complex SoS. While it may be tempting

to improve the fidelity of such models, perhaps by including fur-

ther node properties, edge weights, or more sophiscicated net-

work types, there is a compounding challenge in establishing con-

fidence in the data underpinning these features, given the early

lifecycle stages architecting activity tends to focus on. The more

sophisticated the network representation of an architecture, the

more challenging meaningful interpretation of network properties
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becomes, especially for more complicated aspects, such as assorta-

tivity and examining dynamic processes on the network. Instead, a

more suitable approach is to consider partitioning an architecture

into more homogenous AVs where network concepts may be more

readily mobilized, noting that care should be taken to consider the

diversity in the character of system entities (different types of net-

work nodes) and the relationships between them (different types of

network edges). However, this divide and conquer approach leaves

a challenge of reintegrating the analyses of these separated compo-

nents of an SoS.While it is beyond the scope of this work to recom-

mend particular partitioning approaches, one useful contribution

of a network perspective on architecture evaluation is to bring this

challenge to the fore.

2. Tension multiple metrics against each other. As no single, widely

accepted and applicable, importance or complexity metric is likely

to be established for the kind of complex SoS architectures, we

are interested in, a sensible approach is to use several such mea-

sures, tested and corroborated against each other. System archi-

tects should be cognisant of what each measure foregrounds

and use this understanding to support their evaluations of which

entities in an architecture are more important or how one archi-

tecture differs from another. For example, if resources (energy,

material, and information) can be assumed to always travel via the

shortest paths in an architecture, then Closeness Centrality can

identify those entities that are more central in the architecture.

However, even in such a case, comparison with other centrality

measures will contextualize and thereby strengthen this analysis,

and architects should be cognisant of the implicitmodeling assump-

tions that underpin these metrics, so as to avoid potentially being

misled.

3. Combine quantitative andqualitative assessment. Further to prin-

ciple two, any system architect hoping to utilize a “network per-

spective” should temper the results of numerical analysis with a

qualitative assessment. Simply because a set of enterprise archi-

tecture entities have strong connectivity between them, even tak-

ing into account inter and intraset connectivity does not guaran-

tee that it makes logical sense to treat them as one distinct archi-

tectural “module” or “unit.” The same is true of exploring if a “core”

and “periphery” structure dominates, or if one architecture is more

“complex” than another using oneparticularmeasure of complexity.

Thus, architects may well make use of network science analyses to

examine the structure of their architecture, but they should temper

these results with their own qualitative evaluation.

4. Maintain awareness of modeling depth. Any graph-theoretic

approach to architecture evaluation should explicitly reflect on the

modeling assumptions that underpin their findings. While this task

is conceptually challenging, it is a necessary one to avoid misun-

derstanding or placing overconfidence in some numerical analysis.

Simply put, the network models are not the complex SoS architec-

tures. Further, the architectures are not the real-life SoS in ques-

tion. At each level, the artifacts and models are representations,

abstractions, of the higher level. Care must be taken to not loose

sight of this and test if the assumptions that underpin the network

led enquiry are still valid for the architecture and for the SoS itself.

5. Reflect on the questions a network perspective enables. Finally,

the methodology used here cannot be seen as an alternative to

more traditional approaches to architecture evaluation, but instead

should be understood as offering a complementary perspective

on architecture evaluation. It is instead recommended as a com-

plimentary perspective, in line with a broader systems thinking

approach, that enables architects to ask questions of their architec-

ture that may otherwise go unanswered. Such questions include;

“what makes an entity important in this architecture, what role

does reciprocity, assortativity, or community structure play in this

architecture, what makes this architecturemore robust or resilient

than another?,” or “where is there more merit in considering this

diverse and rich architecture at a greater level of abstraction or a

more fine-grained level of detail?,” or even “what is it about this

architecture that led us to towards the toolbox of network sci-

ence?” As graph-theoretic approaches continue to mature, it will

remain important to critically assess the nature of the questions

that they are capable of answering.

9 CONCLUSIONS

In this paper, we have taken a networks perspective on SoS architec-

ture analysis in order to explore the potential for this approach to

inform architecture design and selection, and also to highlight a series

of challenges that need to be addressed if the approach is to be useful

for system architects.

While several network measures may have relevance to archi-

tectural design and evaluation decisions, we argue that issues with

interpreting network-theoretic properties pose challenges that inter-

fere with their utility. Two real-world SoS architectures (a search and

rescue architecture, and amilitary communications architecture) were

characterized as networks, where a set of architectural entities were

modeled as vertices, and their dependencies and communications

links were modeled as edges. The most significant challenges in taking

a network perspective on real-world architectures are located at this

stage; representing a complex architecture as a network, deciding

what should be included and excluded from the network model, and

findingmeaning in network concepts, measures, andmetrics.

A range of simple network metrics were applied to the two use

case networks, real-world enterprise architectures, in an attempt to

identify key entities and assess gross structural organization. Given

the diversity of, for example, measures of vertex significance and com-

munity detection, it is challenging to either select particular measures

(which may supply partial or idiosyncratic results) or, alternatively,

apply a wide range of measures (which will typically disagree in ways

that require careful analysis), without first considering what such

measures correspond to in the real-world architecture.

Graph-theoretic approaches provide an alternative approach to

exploring and understanding a complex SoS, by representing it as a
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graph and examining this graph’s structure, but critically this structure

is the modeled graph-theoretic structure. It is not the architecture

itself, only an idealized representation of it. In creating a graphical

model, there may be aspects of the SoS that are not modeled and thus

making assertions concerning the structure of the graphical model

may not be equivalent to making assertions concerning the entire SoS.

Analyzing SoS networks in terms of components or communities, for

instance, may neglect potentially important factors, such as geograph-

ical, functional, or organizational separation between components if

these are not explicitly represented in the network structure.

Taking a network perspective on SoS architectures could help

inform which entities in an architecture are most important to one

another, or assist architecture evaluation by helping determine

whether one candidate architecture is more robust, efficient, or

manageable than another. In seeking these insights, however, we

argue that the tools from network science cannot straightforwardly

be applied without developing a more sophisticated understanding

of how they map onto the diversity, richness, and context sensitivity

characteristic of complex SoS architectures. While developing a set

of conceptual tools for the analysis of complex SoS architectures

remains an open research challenge, by developing guiding principles

for the effective mobilization of network concepts to architecture

evaluation, system architects can better take the advantage of these

tools. Further, in bringing to light the challenges system architects

are faced in taking a network perspective on their architectures, they

are better able to avoid being misled by some numerical analysis that

lacks contextual awareness.

Instead of using network analysis as an off-the-shelf tool for empir-

ical analysis and decision support in the design of SoS architectures,

we advocate a more contextual approach in which network analysis is

employed as one of many perspectives that can be taken on an archi-

tecture, one that may reveal insights that would otherwise be over-

looked, but also one that requires cross-validation against more qual-

itative or systems theoretic perspectives that may do a better job of

capturing the rich and heterogeneous properties of SoS architectures.
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