7 research outputs found
Transcription-replication conflicts: How they occur and how they are resolved
The frequent occurrence of transcription and DNA replication in cells results in many encounters, and thus conflicts, between the transcription and replication machineries. These conflicts constitute a major intrinsic source of genome instability, which is a hallmark of cancer cells. How the replication machinery progresses along a DNA molecule occupied by an RNA polymerase is an old question. Here we review recent data on the biological relevance of transcription-replication conflicts, and the factors and mechanisms that are involved in either preventing or resolving them, mainly in eukaryotes. On the basis of these data, we provide our current view of how transcription can generate obstacles to replication, including torsional stress and non-B DNA structures, and of the different cellular processes that have evolved to solve them
The lncRNA 'UCA1' modulates the response to chemotherapy of ovarian cancer through direct binding to miR-27a-5p and control of UBE2N levels.
International audienceOvarian cancer (OC) is the leading cause of death in patients with gynecologic cancers. Due to late diagnosis and resistance to chemotherapy, the 5-year survival rate in patients with OC is below 40%. We observed that UCA1, a lncRNA previously reported to play an oncogenic role in several malignancies, is overexpressed in the chemoresistant OC cell line OAW42-R compared to their chemotherapy-sensitive counterpart OAW42. Additionally, UCA1 overexpression was related to poor prognosis in two independent patient cohorts. Currently, the molecular mechanisms through which UCA1 acts in OC are poorly understood. We demonstrated that downregulation of the short isoform of UCA1 sensitized OC cells to cisplatin and that UCA1 acted as competing endogenous RNA to miR-27a-5p. Upon UCA1 downregulation, miR-27a-5p downregulated its direct target UBE2N leading to the upregulation of BIM, a proapoptotic protein of the Bcl2 family. The upregulation of BIM is the event responsible for the sensitization of OC cells to cisplatin. In order to model response to therapy in patients with OC, we used several patient-derived organoid cultures, a model faithfully mimicking patient’s response to therapy. Inhibition of UBE2N sensitized patient-derived organoids to platinum salts. In conclusion, response to treatment in patients with OC is regulated by the UCA1/miR-27a-5p/UBE2N axis, where UBE2N inhibition could potentially represent a novel therapeutic strategy to counter chemoresistance in OC
The OVAREX study: Establishment of ex vivo ovarian cancer models to validate innovative therapies and to identify predictive biomarkers
International audienceBackgroundOvarian cancer is the first cause of death from gynecological malignancies mainly due to development of chemoresistance. Despite the emergence of PARP inhibitors, which have revolutionized the therapeutic management of some of these ovarian cancers, the 5-year overall survival rate remains around 45%. Therefore, it is crucial to develop new therapeutic strategies, to identify predictive biomarkers and to predict the response to treatments. In this context, functional assays based on patient-derived tumor models could constitute helpful and relevant tools for identifying efficient therapies or to guide clinical decision making.MethodThe OVAREX study is a single-center non-interventional study which aims at investigating the feasibility of establishing in vivo and ex vivo models and testing ex vivo models to predict clinical response of ovarian cancer patients. Patient-Derived Xenografts (PDX) will be established from tumor fragments engrafted subcutaneously into immunocompromised mice. Explants will be generated by slicing tumor tissues and Ascites-Derived Spheroids (ADS) will be isolated following filtration of ascites. Patient-derived tumor organoids (PDTO) will be established after dissociation of tumor tissues or ADS, cell embedding into extracellular matrix and culture in specific medium. Molecular and histological characterizations will be performed to compare tumor of origin and paired models. Response of ex vivo tumor-derived models to conventional chemotherapy and PARP inhibitors will be assessed and compared to results of companion diagnostic test and/or to the patient’s response to evaluate their predictive value.DiscussionThis clinical study aims at generating PDX and ex vivo models (PDTO, ADS, and explants) from tumors or ascites of ovarian cancer patients who will undergo surgical procedure or paracentesis. We aim at demonstrating the predictive value of ex vivo models for their potential use in routine clinical practice as part of precision medicine, as well as establishing a collection of relevant ovarian cancer models that will be useful for the evaluation of future innovative therapies