7,101 research outputs found

    A note on the Hamiltonian as a polymerisation parameter

    Full text link
    In effective models of loop quantum gravity, the onset of quantum effects is controlled by a so-called polymerisation scale. It is sometimes necessary to make this scale phase space dependent in order to obtain sensible physics. A particularly interesting choice recently used to study quantum corrected black hole spacetimes takes the generator of time translations itself to set the scale. We review this idea, point out errors in recent treatments, and show how to fix them in principle.Comment: 7 pages, 2 figures; v2: journal version, minor clarification

    Nonradiative Recombination of Excitons in Carbon Nanotubes Mediated by Free Charge Carriers

    Get PDF
    Free electrons or holes can mediate the nonradiative recombination of excitons in carbon nanotubes. Kinematic constraints arising from the quasi one-dimensional nature of excitons and charge carriers lead to a thermal activation barrier for the process. However, a model calculation suggests that the rate for recombination mediated by a free electron is the same order of magnitude as that of two-exciton recombination. Small amounts of doping may contribute to the short exciton lifetimes and low quantum yields observed in carbon nanotubes.Comment: 18 pages, 4 figures. Submitted to Physical Review

    Fisher Metric, Geometric Entanglement and Spin Networks

    Get PDF
    Starting from recent results on the geometric formulation of quantum mechanics, we propose a new information geometric characterization of entanglement for spin network states in the context of quantum gravity. For the simple case of a single-link fixed graph (Wilson line), we detail the construction of a Riemannian Fisher metric tensor and a symplectic structure on the graph Hilbert space, showing how these encode the whole information about separability and entanglement. In particular, the Fisher metric defines an entanglement monotone which provides a notion of distance among states in the Hilbert space. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We further extend such analysis to the study of non-local correlations between two non-adjacent regions of a generic spin network graph characterized by the bipartite unfolding of an Intertwiner state. Our analysis confirms the interpretation of spin network bonds as a result of entanglement and to regard the same spin network graph as an information graph, whose connectivity encodes, both at the local and non-local level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.Comment: 29 pages, 3 figures, revised version accepted for publicatio

    Landau Quantization in Twisted Bilayer Graphenes: the Dirac Comb

    Full text link
    We study the Landau quantization of the electronic spectrum for graphene bilayers that are rotationally faulted to produce periodic superlattices. Commensurate twisted bilayers exist in two families distinguished by their sublattice exchange parity. We show that these two families exhibit distinct Landau quantized spectra distinguished both by the interlayer coupling of their zero modes and by an amplitude modulation of their spectra at energies above their low energy interlayer coherence scales. These modulations can provide a powerful experimental probe of the magnitude of a weak coherence splitting in a bilayer and its low energy mass structure.Comment: 4 pages, 3 figure

    Z2Z_2 Topological Order and the Quantum Spin Hall Effect

    Full text link
    The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is associated with a novel Z2Z_2 topological invariant, which distinguishes it from an ordinary insulator. The Z2Z_2 classification, which is defined for time reversal invariant Hamiltonians, is analogous to the Chern number classification of the quantum Hall effect. We establish the Z2Z_2 order of the QSH phase in the two band model of graphene and propose a generalization of the formalism applicable to multi band and interacting systems.Comment: 4 pages RevTeX. Added reference, minor correction

    On the Chinese Exchange Rate Regime: an Attempt to Flexibility during 2015

    Get PDF
    This study will demonstrate, through an econometric and asset allocation approach, if and how the Chinese exchange rate regime was changing during 2015. Particularly, China to improve its exchange rate formation system implemented, during July and August 2015, three depreciation as a step toward a market-oriented exchange rate. This situation, along with the new right of the RMB to be an international currency in SDR should generate a loss of weight about the USD in the Chinese basket peg. For this reason, moving from Frankel-Wei’s basic econometric model - but with some appropriate changes - our objective is to verify if the Chinese monetary policy about the exchange rate has affected the inner balance of the Chinese basket-peg leading it towards a flexible exchange rate regime

    Continuum Elastic Theory of Adsorbate Vibrational Relaxation

    Full text link
    An analytical theory is presented for the damping of low-frequency adsorbate vibrations via resonant coupling to the substrate phonons. The system is treated classically, with the substrate modeled as a semi-infinite elastic continuum and the adsorbate overlayer modeled as an array of point masses connected to the surface by harmonic springs. The theory provides a simple expression for the relaxation rate in terms of fundamental parameters of the system: γ=mωˉ02/AcρcT\gamma = m\bar{\omega}_0^2/A_c \rho c_T, where mm is the adsorbate mass, ωˉ0\bar{\omega}_0 is the measured frequency, AcA_c is the overlayer unit-cell area, and ρ\rho and cTc_T are the substrate mass density and transverse speed of sound, respectively. This expression is strongly coverage dependent, and predicts relaxation rates in excellent quantitative agreement with available experiments. For a half-monolayer of carbon monoxide on the copper (100) surface, the predicted damping rate of in-plane frustrated translations is 0.50×10120.50\times 10^{12}~s1^{-1}, as compared to the experimental value of (0.43±0.07)×1012(0.43\pm0.07)\times 10^{12} s1^{-1}. Furthermore it is shown that, for all coverages presently accessible to experiment, adsorbate motions exhibit collective effects which cannot be treated as stemming from isolated oscillators.Comment: 14 pages, RevTeX, submitted to Journal of Chemical Physic

    Formation of Subgap States in Carbon Nanotubes Due to a Local Transverse Electric Field

    Get PDF
    We introduce two simple models to study the effect of a spatially localized transverse electric field on the low-energy electronic structure of semiconducting carbon nanotubes. Starting from the Dirac Hamiltonian for the low energy states of a carbon nanotube, we use scattering theory to show that an arbitrarily weak field leads to the formation of localized electronic states inside the free nanotube band gap. We study the binding energy of these subgap states as a function of the range and strength of the electrostatic potential. When the range of the potential is held constant and the strength is varied, the binding energy shows crossover behavior: the states lie close to the free nanotube band edge until the potential exceeds a threshold value, after which the binding energy increases rapidly. When the potential strength is held constant and the range is varied, we find resonant behavior: the binding energy passes through a maximum as the range of the potential is increased. Large electric fields confined to a small region of the nanotube are required to create localized states far from the band edge.Comment: 15 pages + 5 figures, 1 table in RevTe
    corecore