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Formation of Subgap States in Carbon Nanotubes Due to a Local
Transverse Electric Field

Abstract
We introduce two simple models to study the effect of a spatially localized transverse electric field on the low-
energy electronic structure of semiconducting carbon nanotubes. Starting from the Dirac Hamiltonian for the
low-energy states of a carbon nanotube, we use scattering theory to show that an arbitrarily weak field leads to
the formation of localized electronic states inside the free nanotube band gap. We study the binding energy of
these subgap states as a function of the range and strength of the electrostatic potential. When the range of the
potential is held constant and the strength is varied, the binding energy shows crossover behavior: the states
lie close to the free nanotube band edge until the potential exceeds a threshold value, after which the binding
energy increases rapidly. When the potential strength is held constant and the range is varied, we find resonant
behavior: the binding energy passes through a maximum as the range of the potential is increased. Large
electric fields confined to a small region of the nanotube are required to create localized states far from the
band edge.
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Formation of subgap states in carbon nanotubes due to a local transverse electric field
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We introduce two simple models to study the effect of a spatially localized transverse electric field on the
low-energy electronic structure of semiconducting carbon nanotubes. Starting from the Dirac Hamiltonian for
the low-energy states of a carbon nanotube, we use scattering theory to show that an arbitrarily weak field leads
to the formation of localized electronic states inside the free nanotube band gap. We study the binding energy
of these subgap states as a function of the range and strength of the electrostatic potential. When the range of
the potential is held constant and the strength is varied, the binding energy shows crossover behavior: the states
lie close to the free nanotube band edge until the potential exceeds a threshold value, after which the binding
energy increases rapidly. When the potential strength is held constant and the range is varied, we find resonant
behavior: the binding energy passes through a maximum as the range of the potential is increased. Large
electric fields confined to a small region of the nanotube are required to create localized states far from the
band edge.
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I. INTRODUCTION

Single-walled carbon nanotubes are cylindrical fullerenes
with a radius on the order of a nanometer and lengths that
can exceed a micrometer. They occur in both semiconducting
and metallic species. The conductivity has a purely geomet-
ric origin that allows all nanotubes to be divided into three
types: moderate-gap semiconductors, narrow-gap semicon-
ductors, and metals. The most common is the first type,
which have a band gap between 0.1 and 1 eV that scales
inversely with the tube radius R. This band gap is required in
order for the electron wave function to be single valued. The
narrow-gap semiconductors have a band gap on the order of
0.01 eV that scales inversely with R2 and arises from the
distortion of the honeycomb lattice when it is wrapped into a
cylinder. In the metallic armchair nanotubes, the formation
of a band gap is prohibited by symmetry.1 We only consider
moderate-gap semiconducting nanotubes in this paper.

In applications involving carbon nanotubes as electronic
and optical components, a method for controllably and con-
tinuously varying the size of the intrinsic band gap would be
useful. In principle, elastic deformations and magnetic flux
through a nanotube can be used to control the band gap.1,2

Another possibility is to tune the band gap with a static elec-
tric field perpendicular to the nanotube axis. A transverse
electric field leads to a Stark shift of the electronic energy
levels. The scale of this shift is set by the electric potential
difference across the diameter of the nanotube: �V�2E0R,
where E0 is the magnitude of the electric field. In analogy
with the Stark effect in atomic physics, one might expect a
continuous reduction in the nanotube band gap as the
strength of the electric field is increased. This is the case for
boron-nitride nanotubes, which are wide-gap semiconductors
with a band gap on the order of 5 eV. A Stark shift was
predicted and has been observed.3–5

Several authors have studied the effect of a uniform static
transverse electric field on the band structure of moderate-
gap single-walled carbon nanotubes.3,6–12 Instead of a linear
or quadratic Stark shift in the band gap, numerical simula-

tions indicate crossover behavior. The change in band gap is
small until the electric field exceeds a threshold, after which
the band gap decreases linearly with increasing field
strength.3,6,10,11

Novikov and Levitov have used the low-energy Dirac
theory for carbon nanotubes to provided a natural explana-
tion of these numerical results.7,8 In the Dirac theory, the
band gap is fixed at its zero-field value until the electric field
exceeds a critical strength. Below the critical field, the band
gap is protected by a chiral gauge symmetry; above the criti-
cal field, the effective mass of the charge carriers changes
sign, and the band gap closes around the symmetry-protected
point.

Numerical simulations do not exhibit critical behavior—
there are small increases or decreases in the band gap, even
in very weak fields. However, changes in the band gap are
small below a threshold field strength. As shown in Appen-
dix A, the critical field predicted by Novikov and Levitov is
smaller than the threshold fields reported in tight-binding
calculations. The work of Novikov and Levitov shows that
the linear Dirac theory provides a qualitative description of
the response of semiconducting nanotubes to a uniform
transverse electric field: crossover behavior. This simple
model captures the essential physical properties of a nano-
tube necessary to understand the general features of its elec-
tronic response.

In this paper, we study a nanotube in a nonuniform field
and explore the possibility that spatially varying fields could
couple to the minimum gap. The chiral symmetry of the
uniform field model is broken by an inhomogeneous electric
field, and the electronic response to a nonuniform field is
qualitatively different.

Our work suggests that the formation of exponentially
localized subgap states is a general feature of the electronic
response of semiconducting carbon nanotubes to transverse
electric fields localized to a small region along the tube axis.
Since the states are localized, they do not reduce the band
gap for free particle transport along the nanotube axis. This
is different from the response to a uniform field, in which the
gap for excitation from the valence band to the conduction
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band is modified. Our results indicate that this gap remains
fixed in a field localized to a small region along the nanotube
axis, even when the field strength is large.

We study two simple models for a localized electric field.
In both models, the potential modifies the density of states in
two ways: �1� electron scattering leads to periodic variations
in the density of states along the nanotube axis, and �2� the
potential creates exponentially localized states inside the free
nanotube band gap. Figure 1 is a plot of the density of states
near the band edge for a free nanotube and the two models
we studied. The potentials define the center of an infinite
nanotube. The plot shows the density of states at a distance
of one tube radius from this origin.

Localized states form inside the free nanotube band gap in
arbitrarily weak fields; however, the binding energy as a
function of potential strength shows crossover behavior simi-
lar to that observed in numerical simulations of nanotubes in
uniform transverse electric fields. When the range of the po-
tential is held constant, the subgap states lie close to the band
edge until the electric fields exceed a threshold strength.

The remainder of the paper is divided into four sections.
In Sec. II, we present the Hamiltonian for a semiconducting
carbon nanotube in a static transverse electric field and out-
line the scattering theory we used to study the spectra of
these systems. Next, we analyze two models in which the
potential due to the applied field is localized along the nano-
tube axis. In Sec. III, we consider an electric field that can be
modeled as a delta function in the long-wavelength Hamil-
tonian. In Sec. IV, we consider an effective square well po-
tential. In Sec. V, we compare the solutions of these models.
Our main results are presented in Figs. 3–5.

II. HAMILTONIAN AND SCATTERING THEORY

The electronic structure of a carbon nanotube is inherited
from the band structure of two-dimensional graphene, a pla-

nar honeycomb lattice of carbon atoms. Graphene is a semi-
metal with a vanishing band gap at the six corners of the first
Brillouin zone, the K and K� points.13 Since the honeycomb
lattice has a two atom basis, the Bloch wave functions are a
sum of amplitudes for each sublattice, which we denote A
and B:

�k�r� = �A,k�r� + �B,k�r� . �1�

Near the K and K� points, the electron wave function can
be approximated by introducing envelope functions to de-
scribe long-wavelength variations of the exact wave func-
tions at K or K�. Thus, if the total wave vector is k=K+q,
then

�k�r� = �A,K�r�vK�r� + �B,K�r�wK�r� . �2�

The Bloch functions �� are the exact K wave functions and
oscillate on the scale of the lattice spacing. The envelope
functions v and w oscillate on much longer length scales.

When expanded to linear order in q, the resulting effec-
tive Hamiltonian for the envelope functions near the K
point19 is a massless Dirac equation:1,14,15

− i�vF��x�x + �y�y��vK�r�
wK�r�

� = E�q��vK�r�
wK�r�

� . �3�

The factor �vF comes from the tight-binding model of
graphene. Its value is 3at /2�0.53 eV nm, where t is the
nearest neighbor hopping energy and a is the distance be-
tween neighboring atoms. The effective Hamiltonian de-
scribes spinless electrons in the graphene lattice. The two
components of the pseudospinor give the relative amplitude
for an electron or hole to be localized on the A and B sub-
lattices.

The low-energy theory of a carbon nanotube follows from
this Hamiltonian. One defines a circumference vector C in
the graphene lattice, which determines both the radius R and
chiral angle � of the nanotube. The full electron wave func-
tion must be single valued on the surface of the nanotube:
�k�r+C�=�k�r�. This requirement collapses the energy sur-
face of graphene into a set of discrete energy bands. If none
of the energy bands passes through the K and K� points, then
the nanotube will have a band gap inversely proportional to
its radius, and the envelope functions v and w satisfy quasi-
periodic boundary conditions.1 These are the moderate-gap
semiconducting carbon nanotubes we consider in this paper.

The natural description of a nanotube is in cylindrical
coordinates. The displacement along the nanotube axis, z,
and angular displacement around the circumference, 	, are
related to the �x ,y� coordinates of the graphene sheet by a
rotation through the chiral angle �. �We define � to be the
angle between the K point and the nanotube axis, so �=0 for
armchair nanotubes and �=
 /6 for zigzag nanotubes.� The
transformations are

� z

R	
� = �x cos � + y sin �

y cos � − x sin �
� . �4�

In the coordinates of the nanotube, Eq. �3� can be ex-
pressed

H = − i��vF/R�e−i�z�/2�R�x�z + �y�	�ei�z�/2. �5�

0.2 1/3 0.5

0

Energy

D
O

S
Free NT
Point
Square Well

FIG. 1. �Color online� The local density of states near the center
of a carbon nanotube for energies close to the free nanotube band
edge at �=1 /3. Energies are given in units of �vF /R. The plot
shows bound states inside the band gap and a modification of the
density of states near the band edge.

JESSE M. KINDER AND E. J. MELE PHYSICAL REVIEW B 76, 195438 �2007�

195438-2



The energy spectrum of this free nanotube Hamiltonian is
a series of hyperbolic bands given by

Em�q� = ± ��vF/R���qR�2 + �m
2 , �6�

where q is the momentum along the nanotube axis and �m
=m+� /3. The integer m is the subband index, and �= ±1 is
required by the quasiperiodic boundary conditions on the
envelope functions. Without loss of generality, we choose
�=1 in the remainder of the paper.

Placing the nanotube in a static electric field perpendicu-
lar to its axis introduces the scalar potential

V�z,	� = e�E0/�Rf�z�cos 	 . �7�

E0 sets the scale of the applied field strength; variations in
field strength along the nanotube axis are described by the
dimensionless function f�z�. The electric field that enters the
Hamiltonian is the screened electric field, not the applied
electric field. Calculations indicate that the effects of depo-
larization are significant and reduce the strength of the exter-
nal field by a factor of roughly 5.7,16 We include depolariza-
tion effects through the constant .

The natural energy scale of the nanotube system is �vF /R.
We will use this quantity as the unit of energy and work only
with the reduced Hamiltonian. The reduced potential strength
is u=eE0R2 /�vF. This is a convenient parameter to use in
calculations, but it obscures the magnitude of the fields in-
volved. For reference, u=1 in a nanotube with a diameter of
1 nm corresponds to an applied electric field strength of
about 10 V /nm.

The reduced Hamiltonian—with dimensionless eigenval-
ues �—is the starting point for both of our models:

H = − ie−i�z�/2�R�x�z + �y�	�ei�z�/2 + uf�z�cos 	 . �8�

Because the potential depends on the azimuthal angle 	, an-
gular momentum is no longer a good quantum number. How-
ever, the potential is single valued around the circumference
of the nanotube. The Hamiltonian has a discrete symmetry
under 	→	+2
, so its eigenstates can be expanded in the
basis of angular momentum eigenstates of the unperturbed
Hamiltonian. The potential is proportional to cos 	, so it will
only connect states whose angular momenta differ by ±1,
i.e., electronic states in neighboring energy bands. Projecting
out the azimuthal degree of freedom in the Hamiltonian of
Eq. �8� gives

Hm,n = e−i�z�/2��y�m − iR�x�z�ei�z�/2�m,n + �u/2�f�z��m,n±1,

�9�

where m and n are the band indices of the unperturbed nano-
tube.

We study this Hamiltonian for two different models of a
nonuniform transverse electric field. In the first, we treat the
potential as a point scatterer with f�z����z�; in the second,
we model the potential as a square well so that f�z� is con-
stant within a region of length L and zero outside. Neither of
these models can represent a real electric field because nei-
ther potential satisfies Maxwell’s equations. However, com-
mon features in both these models suggest a universal re-
sponse to a localized static transverse electric field: the

formation of localized states with energies inside the unper-
turbed band gap.

Equation �9� is an effective Hamiltonian for the long-
wavelength modes of the carbon nanotube. Accordingly, f�z�
is an effective profile of the electric field. The physical inter-
pretation of f�z� can be made precise by considering the
three important length scales in the problem: the length over
which the potential changes significantly, �x; the wavelength
�or decay length� of the envelope functions, �=2
 / �q�; and
the distance between neighboring atoms of the honeycomb
lattice, a. The natural cutoff for the linear Dirac theory of
electrons in carbon nanotubes is ��R.20 Particles with ener-
gies near the band edge may have wavelengths much larger
than the radius, on the order of the tube length. As a result,
we may consider the wavelength of the envelope functions to
be bounded from below: ��R.

We consider potentials that satisfy a��x��. The physi-
cal field is continuous. The change in potential over distances
comparable to the lattice spacing is negligible, but on length
scales comparable to the wavelength of the envelope func-
tions, the field strength changes abruptly. Since the physical
potential is roughly constant over distances comparable to
the lattice spacing, there is no intervalley scattering between
the K and K� points even though the potential in the effec-
tive Hamiltonian is discontinuous. For such a potential, the
energy spectrum can be determined by considering a single
valley in isolation. Figure 2 illustrates the types of potentials
to which the simple models discussed in this paper might
apply.

In the remainder of this paper, we will ignore the chiral
angle �. The dependence of Hm,n on � can be removed with
a unitary transformation. This is discussed in Appendix B, in
which we show that the density of states and bound state
energies of Eq. �9� do not depend on the chiral angle. The
results derived for �=0 apply to chiral tubes as well.21

To study the effects of these potentials on the electronic
structure of a carbon nanotube, we use scattering theory to
determine the Green function of Eq. �9� from the Green func-
tions of a free nanotube. The singularities of the Green func-
tion give the energy spectrum, and its trace gives the local
density of states. Free nanotube Green functions are shown
in an open font: G. The full Green functions for a nanotube
in the applied field are displayed in a script font: S.

The Green function for a charge carrier in band m of a
free nanotube that satisfies outgoing boundary conditions as
�z−z�� approaches ±� is

Gm��,z,z�� =
� + �y�m + sgn�z − z���x�m���

2iR�m���
ei�m����z−z��/R,

�10�

where �m���=��2−�m
2 . This expression is derived in Appen-

dix C. The Green functions are 2�2 matrices to account for
the psuedospin of the envelope functions.22 When �����m,
�m��� is imaginary and the Green functions decay exponen-
tially as �z−z�� increases.

The Green functions of the perturbed system are solutions
of Dyson’s equation: S=G+GVS. Formally, the solution is
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S =
1

1 − GV
G , �11�

where 1 is the 2�2 identity matrix. Expanding this expres-
sion gives an infinite series:

S = G + GV	

n=0

�

�GV�n�G . �12�

This is an operator equation, and products are shorthand for
integration over position along the nanotube axis and sum-
mation over all bands. In general, this equation cannot be
solved exactly. We make a series of approximations that al-
low us to carry out a partial summation and approximate the
exact Green function.

As shown in Appendix D, when the energy of a charge
carrier is close to the band edge, the largest terms in the
Dyson series are those that only contain transitions to the
neighboring bands. Retaining only Green functions from the
first three bands �m=0, ±1�, Eq. �12� can be summed to give
the full Green function for the lowest band:

S0 = G0 + G0�0

1

1 − G0�0
G0. �13�

�0=V�G+1+G−1�V is an effective potential for the lowest
band. It will be nonlocal in general; however, for the models
studied in Secs. III and IV, the effective potential only de-
pends on energy. The general form of the full Green function
is then

S0��,z,z�� = G0��,z,z�� + G0��,z,0��0���

�
1

1 − G0��,0,0��0��� + i�
G0��,0,z�� .

�14�

A small imaginary number, i�, has been included in the de-
nominator of Eq. �14� so the poles in the complex energy
plane correspond to physical particles. This is the retarded
Green function.

The density of states in the nanotube is proportional to the
trace of the Green function. The poles of S0 are bound state
energies, and branch cuts correspond to energy bands.17,18

When the energy approaches a band edge of the unperturbed
Hamiltonian, either G0 or �0 diverges. In either case, S0
remains finite, which means S0 does not share any singulari-
ties of the free nanotube Green functions. �This is clear in
Fig. 1. The free nanotube density of states has a van Hove
singularity at the band edge, while the density of states van-
ishes at the band edge in the presence of a potential.�

If there are any poles in Eq. �14�, they occur when the
determinant of the denominator vanishes, i.e.,

det�1 − G0��,0,0��0��� = 0. �15�

This equation yields a sixth-order polynomial, and we were
unable to find a general solution for energy as a function of
potential strength. To find the roots, we created a simple
numerical routine to determine the energy �within a user-
specified tolerance� at which the determinant changes sign.

In both of the models, numerical results suggest that two
localized states are created inside the band gap for any non-
zero potential—one for the valence band and one for the
conduction band. In Appendix E, we show analytically that
the delta function model has states inside the free nanotube
band gap for arbitrarily weak fields. The analog of this proof
for the square well model is discussed in Sec. IV.

The fact that bound states come in pairs reflects the
symmetry of the particle and hole spectra for the potential in
Eq. �7�. When the charge of the particle is reversed,
V�z ,	�→−V�z ,	�, which is equivalent to physically rotating
the nanotube by 
 about its axis. Since the point at which
	=0 is arbitrary, the particle and hole spectra must be iden-
tical, and all energy eigenvalues of Eq. �9�, including bound
state energies, come in pairs ±�.

In the more familiar case of a charged impurity, an attrac-
tive potential for electrons is repulsive for holes, and the
bound state spectrum is not symmetric. The difference be-
tween the spectra of a charged impurity and the potential
considered in this paper arises from the angular dependence
of the latter.

(b)

(a)

FIG. 2. �Color online� Field profiles that can be analyzed with
the models presented in this paper. The black lines show the electric
field strength along the nanotube axis. The red lines indicate spatial
variations in the envelope functions along the axis. The potentials
are roughly constant on length scales comparable to the interatomic
spacing, but change significantly on the scale of the envelope func-
tion wavelength. In �a�, the potential rises from zero to its maxi-
mum value and falls back to zero within a single wavelength of the
envelope function. In the effective Hamiltonian, this potential can
be modeled as a point scatterer. In �b�, the potential rises from zero
to its maximum value over a distance smaller than the envelope
function wavelength. It is constant for several wavelengths, then
falls back to zero over a distance smaller than the wavelength. In
the effective Hamiltonian, it can be represented by a square well.
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We define �B to be the �non-negative� energy at which the
full Green function has a pole. To study the dependence of
the bound state energies on the range and strength of the
potential, we plot the binding energy �=1−�B /�0, which is
the normalized difference in energy between the localized
state and the free nanotube band edge. Our numerical results
show 0���1. If �=0, there are no states inside the gap; if
�=1, the subgap states lie on top of each other at the center
of the free nanotube band gap.

In the following two sections, we apply the general for-
malism described here to two specific models. In the first, we
treat the effective field profile as a delta function. In the
second, we model the effective field profile as a square well.
We study the binding energy of the subgap states as a func-
tion of the potential size L and strength u. Figures 3–5 illus-
trate our results.

III. DELTA FUNCTION MODEL

In this section, we study the electronic structure of a car-
bon nanotube in a transverse electric field that can be treated
as a delta function in the effective Hamiltonian �see Fig.
2�a�.

The physical potential can be written V�z�=V0h�z�, where
h�z� is some function that is localized to a small region of the
nanotube axis; for instance, a Lorentzian distribution peaked
around z=0. We define the range of the potential to be
L=�dz h�z�, then replace f�z� by L��z� in Eq. �9�. This en-
sures that the integrated strength of the potential is un-
changed. A delta function potential in the effective Hamil-
tonian will be a reasonable approximation as long as L�R.

The effective Hamiltonian for the delta function model is

Hm,n = ��y�m − iR�x�z��m,n + �uL/2���z��m,n±1. �16�

Since the potential is proportional to uL, the range L and
strength u of the potential cannot be varied independently.

Any particular choice of �u ,L� is equivalent to an infinite
class of choices �u� ,L /��.

When the potential is proportional to a delta function, the
integrals of Eq. �12� can be evaluated exactly. For instance,
the term G0VG±1VG0 is

�uL/2�2G0��,z,0�G±1��,0,0�G0��,0,z�� . �17�

As a result, the full Green function is given by Eq. �14� with

�0��� = �uL/2�2�G+1��,0,0� + G−1��,0,0� . �18�

The local density of states is proportional to the imaginary
part of the trace of Eq. �14�. When � lies inside the free
nanotube band gap, the Green functions are exponentially
decaying functions, as mentioned in Sec. II. Since the bound
states lie inside the free nanotube band gap, the local density
of states decays exponentially with increasing distance from
the potential:

���B,z� � exp��2�z�/R���0
2 − �B

2 . �19�

The bound state wave functions are centered on the potential
and decay exponentially, like the solutions of the one-
dimensional Schrödinger equation with an attractive delta
function potential.

Figure 3 shows �=1−�B /�0 as a function of potential
strength u when L=R. The binding energy shows crossover
behavior similar to the band gap in a uniform transverse
electric field. Although the subgap states are very near the
band edge when the field is weak, there is no critical behav-
ior like that found by Novikov and Levitov. In Appendix E,
we show analytically that the Green function in Eq. �14� has
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FIG. 3. �Color online� Binding energy as a function of potential
strength. The horizontal axis shows the value of the dimensionless
parameter u=eE0L / ��vF /R� that characterizes the applied field
strength. The line is �=1−�B /�0 for L=R. The subgap states ap-
proach the middle of the gap as the potential strength is increased,
but lie close to the band edge in weak fields.
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FIG. 4. �Color online� Binding energy as a function of potential
strength in the square well model when the width of the potential is
fixed. The horizontal axis shows the value of the dimensionless
parameter u=eE0L / ��vF /R� that characterizes the applied field
strength. The lines are �=1−�B /�0 for the potential widths L /R
shown in the legend. The shape of the individual curves is similar to
the binding energy curve of the delta function model in Fig. 3.
Increasing the width of the well decreases maximum binding
energy.
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two poles for an arbitrarily weak potential and that the bind-
ing energy of the subgap states increases as u4 for small u.

This quartic scaling is not unique to the Dirac model and
occurs in nonrelativistic models as well. If the potential of
Eq. �7� is introduced to a Schrödinger equation describing
electrons confined to the surface of a cylinder, the binding
energies also grow with u4. Because the potential only con-
nects states in neighboring bands, the effective potential in a
particular band is proportional to u2��z�. The binding energy
will scale with the square of the effective potential strength,
which explains the u4 dependence in Fig. 3. The figure shows
that the potential must be strong �eE0L��vF /R� to produce
subgap states that lie more than a few percent below the band
edge.

IV. SQUARE WELL MODEL

In this section, we model the potential as a square well in
the effective Hamiltonian �see Fig. 2�b�. In this model, the
strength and size of the potential can be varied indepen-
dently, and the restrictions on the range of the potential are
relaxed. We find that the effect of changing the range of the
potential is different from changing the field strength.

A square well potential in the effective Hamiltonian of
Eq. �9� corresponds to a physical field that increases from
zero to its maximum strength in a distance that is small com-
pared to the scale on which the envelope functions vary. The
field strength is assumed to be constant for some length L,
after which it decreases back to zero.

For the square well model to be a good approximation of
the physical potential, L must be smaller than the length of
the nanotube. Otherwise, the electric field should be treated
as uniform. There are no other physical restrictions on L.
However, we are only able to solve Dyson’s equation after

imposing the additional restriction that qL�1, where q is the
wave vector of the lowest band �m=0�. Since we study states
near the band edge where q approaches zero, this is not a
restrictive assumption. It makes the effective potential a
point scatterer for states in the lowest band. The difference
between this model and the delta function model is that the
�exponentially decaying� states in neighboring bands
�m= ±1� interact with the potential in a region of finite size.

The effective Hamiltonian for the square well model is

Hm,n = ��y�m − iR�x�z��m,n + �u/2���z���z − L��m,n±1,

�20�

where ��z� is the step function.
In the delta function model, ��z� set all of the nonanalytic

functions of the Green functions in Eq. �10� equal to zero in
the integrals of the Dyson series. For the square well model,
the integral has to be evaluated piecewise to account for the
terms in the Green function proportional to sgn�z−z�� and
�z−z��. For instance, the second-order term

G0VG±1VG0 = �u/2�2�
0

L

dx�
0

L

dy

�G0��,z,x�G±1��,x,y�G0��,y,z�� �21�

must be divided into eight regions of integration if both z and
z� lie inside the square well. We are unable to derive a gen-
eral formula for the O�u2n� terms of the Dyson series. As a
result, we cannot sum the series, calculate the full Green
function, find the density of states, or search for localized
states below the band gap.

By requiring that qL�1, where q is the wave vector of
the lowest band, we can approximate the integrals and sum
the series of Eq. �12�. This approximation simplifies the ex-
pression for G0�� ,z ,z�� in two ways. First, if L�R, then qR
is smaller than qL, which is negligible. Thus, we can ignore
the term in the Green function proportional to sgn�z−z��.
Second, when G0 appears inside an integral, its phase,
exp�iq�x−y��, can be replaced by a more convenient func-
tion. If x and y lie inside the region of integration and z is
arbitrary, the error introduced by the following substitutions
is of order qL:

eiq�z−x� → eiq�z�eiqx,

eiq�x−y� → eiq�x+y�. �22�

�Since z may lie anywhere along the length of the nanotube,
we do not assume q�z� is small.� As an example, consider the
following:

�
0

L �
0

L

dx dy eiq�x−y� = �
0

L �
0

L

dx dy eiq�x+y� + O�qL� .

�23�

Since we are interested in the limit qL�1, the error is insig-
nificant.

Assuming qL�1, the integral in Eq. �21� gives
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FIG. 5. �Color online� Binding energy as a function of potential
width in the square well model when the field strength is fixed. The
horizontal axis gives the width of the square well, L /R. The lines
are �=1−�B /�0 for the potential strengths u shown in the legend.
The binding energy passes through a maximum as the width is
increased, after which it falls back to zero.
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G0VG±1VG0 = u2�±1���G0��,z,0�G±1��,0,0�G0��,0,z��

+ O�qL� . �24�

The scalar function �±1��� depends on � and L,

����� =
R2

2���
2 − �0

2�
�x���� + e−x���� − 1 , �25�

where x���L /R����2 −�2= i������L /R�.
Ignoring the O�qL� terms, all the integrations and sum-

mations can be carried out as in the delta function model,
and the full Green function is given by Eq. �14� with

�0��� = u2��+1���G+1��,0,0� + �−1���G−��,0,0� . �26�

Comparing this expression with Eq. �18� shows that
when qL�1, the square well model is equivalent to a
delta function model with an energy-dependent range:
�����=2������. As a result, the arguments of Appendix E
also apply to the square well model.

When L�R and ���0, ���� approaches L2 /4, and the
square well model reduces to the delta function model, for
which there are bound states at any field strength. When
L R, the exponential term in Eq. �25� can be ignored. An
analysis similar to that of Appendix E shows that there are
bound states for arbitrarily weak fields in this limit as well.
Since ����� is a smoothly increasing function of L, we in-
terpolate between these two limits and conclude that a square
well potential of any strength and range leads to the forma-
tion of localized states inside the free nanotube band gap.

As in the delta function model, the bound state wave
functions decay exponentially away from the potential, and
the binding energy is proportional to u4 for small u.

Figure 4 shows the binding energy of the subgap states as
a function of electric field strength when the range of the
potential is fixed �fixed L, variable u�. The shapes of the
individual curves are similar to that of the delta function
model in Fig. 3. The range of the potential determines the
asymptotic value of the binding energy as the field increases.

Figure 5 shows the binding energy of the subgap states as
a function of potential width when the potential strength is
held constant �fixed u, variable L�. The figure indicates reso-
nant behavior: for a given field strength, the binding energy
passes through a maximum as L is increased from zero.

The existence of a maximum binding energy follows from
the limiting cases L�R and L R. The energy of the bound
state is the solution of the secular equation, Eq. �15�. When L
is small, the binding energy increases in proportion to u4.
When L is large, ���� is proportional to L, and Eq. �15�
effectively becomes det G0�0=0, which gives �=�0. Correc-
tions are of order R /L. Since the binding energy increases
initially and approaches zero in the limit L R, it must pass
through a maximum. This leads to the peaks shown in Fig. 5.

The decrease in binding energy with increasing length
should not be interpreted as the uniform field limit of the
square well model. The results of Fig. 5 were obtained by
assuming that the square well was smaller than the wave-
length of a particle in the lowest band, which is not satisfied
in a uniform field.

These two figures indicate that a strong electric field ap-
plied over a small region of the nanotube is required to create
localized states far from the band edge.

V. CONCLUSION

In this paper, we have considered the effects of nonuni-
form transverse electric fields on the electronic structure of
semiconducting carbon nanotubes by using the linear Dirac
Hamiltonian for states near the Fermi surface. We considered
fields that vary slowly over distances comparable to the in-
teratomic spacing, but vary rapidly over distances compa-
rable to the wavelength of the envelope functions. This al-
lows us to ignore intervalley scattering even though the
effective potentials in the long-wavelength Hamiltonian
change discontinuously.

We studied two effective potentials: a delta function and a
square well. In both models, the potential leads to the forma-
tion of localized states inside the free nanotube band gap for
arbitrarily weak fields. For weak fields, the energy of the
subgap states moves away from the band edge in proportion
to the fourth power of the electric field strength. When the
range of the potential is fixed, the binding energy of the
subgap states exhibits crossover behavior. The states lie close
to the unperturbed band edge until the field strength exceeds
a threshold value, after which they rapidly approach the cen-
ter of the band. In the square well model, the binding energy
of the subgap state passes through a maximum as the width
of the well is increased. In both models, a strong electric
field applied to a small region of the nanotube is required to
create subgap states far from the band edge.

The subgap states are exponentially localized around the
center of the potential. As such, a single subgap state is not
likely to affect transport along the nanotube axis. However,
these states might be important in processes involving trans-
port perpendicular to the nanotube axis, such as scanning
tunneling microscopy experiments. The effect on scanning
tunneling microscopy �STM� experiments designed to mea-
sure the nanotube band gap should be negligible, however. If
the tip of the scanning probe just touches the nanotube,
which just touches the substrate into which electrons will
flow, then the electric field in the nanotube is roughly equal
to the potential drop across its diameter divided by the static
dielectric constant. In order for electrons to tunnel into the
nanotube, the potential due to the STM tip must be on the
order of the band gap: e�V�2�v f /3R. This gives u�1 /3.
The subgap states at this field strength are virtually indistin-
guishable from the free nanotube band edge in either model.

One might also consider several of these subgap states
evenly spaced along the nanotube axis. This array could be
used to control tunneling through the nanotube for charge
carriers with energies inside the band gap. By tuning the
energy of the subgap states, one could control tunneling
across the nanotube from a reservoir of charge carriers at
some energy ���0. Subgap states created by an external
potential could also be important in exciton dynamics. They
might provide specific sites along the tube for exciton local-
ization and recombination.

Experiments to explore this effect would require the gen-
eration of large electric fields, tens of volts per nanometer, in
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a relatively small region along the nanotube axis. One ex-
perimental signature of the subgap states would be an in-
crease in tunneling current perpendicular to the nanotube
axis with no change in transport along the tube axis at the
same potential bias.

The Green function approach we used is not limited to
carbon nanotubes. The theory of graphene nanoribbons is
similar to that of carbon nanotubes. The major difference is
that periodic boundary conditions are replaced by hard wall
boundary conditions. A uniform static electric field perpen-
dicular to the edge of a nanoribbon applied over a small
region would lead to a potential similar to Eq. �7�. However,
for nanoribbons, the applied field would mix all bands since
the potential is linear instead of periodic. The methods de-
scribed in this paper might be useful in spite of the differ-
ences.

It would also be desirable to compare our predictions with
the results of numerical simulations. However, it seems that
the conditions in which our effective potentials accurately
approximate the physical field make numerical simulation
difficult. The potential breaks translation invariance and ex-
tends over a large number of unit cells, but a very small
fraction of the length of the nanotube. As a result, the num-
ber of atoms and unit cells required would make a tight-
binding simulation or density functional theory challenging.
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APPENDIX A: COMPARISON OF ANALYTIC
AND NUMERICAL RESULTS FOR UNIFORM STEF

Table I compares analytic and numerical predictions for
the band gap response of a semiconducting carbon nanotube
in a uniform transverse electric field. The first two columns
give the chiral indices and radius of the nanotube analyzed.
The third column gives the critical field strength predicted by
Novikov and Levitov:7

Ec � 0.62�vF/eR2 �
205

m2 + mn + n2 V/nm.

The fourth column gives the approximate value of the thresh-
old electric field strength from numerical simulations �the

field strength at which the band gap started to decrease lin-
early with increasing field strength, interpolated from the
graphs given in the references cited�, and the fifth column
gives the reference from which this value was taken. All
numerical simulations were for semiconducting zigzag nano-
tubes. The electric field strengths do not include depolariza-
tion effects. The values represent the field inside the nano-
tube, not the applied electric field.

The Dirac Hamiltonian is the linear k ·p approximation of
a tight-binding Hamiltonian for carbon nanotubes, so the re-
sults of the two theories should agree, at least qualitatively.
Novikov and Levitov acknowledge that higher-order terms
break the symmetry that protects the band gap,7 so there is
no true critical behavior. However, the critical field strength
of the Dirac theory provides an intuitive explanation for the
crossover behavior reported in numerical simulations. The
low-energy Dirac theory captures the essential physics of
carbon nanotubes necessary for a qualitative description of
the response to an external electric field.

APPENDIX B: NO DEPENDENCE ON CHIRAL ANGLE

Here, we show that the density of states and the energy
eigenvalues of the subgap bound states do not depend on the
chiral angle.

The Hamiltonian for a nanotube in a nonuniform trans-
verse electric field can be written

H��� = e−i�z�/2���y�m − iR�x�z��m,n + �u/2�f�z��m,n±1ei�z�/2.

�B1�

This is equivalent to Eq. �9�. �Since the potential is a scalar,
e−i�z�/2Vm,n�z�ei�z�/2=Vm,n�z�. We will refer to the Green
functions derived from this Hamiltonian as “chiral.” Those
studied in the main body of the text do not depend on the
chiral angle, so we will refer to them as “achiral.”

The equation satisfied by the chiral Green functions is

���m,n − Hm,n���Sm��� = ��z� . �B2�

Since � is also a scalar, we may write

e−i�z�/2���m,n − Hm,n�ei�z�/2Sm��� = ��z� . �B3�

Multiplying on the left by ei�z�/2 and on the right by
e−i�z�/2, we obtain an achiral operator acting on a transformed
Green function. The transformed Green function is the in-
verse of an operator that does not depend on the chiral angle,
and so it too must be independent of the chiral angle. The
equation satisfied by the achiral Green functions is

���m,n − Hm,n�Sm = ��z� . �B4�

The chiral and achiral Green functions are related by a uni-
tary transformation:

Sm = ei�z�/2Sm���e−i�z�/2. �B5�

The results of the main body of the paper apply to the
achiral Green functions. Next, we show that the bound state
energies and density of states derived from achiral Green
function Sm are the same as those derived from the chiral

TABLE I. Comparison of the critical field strength predicted by
Novikov and Levitov, and the threshold field reported in numerical
tight-binding calculations. The critical field from the linear Dirac
theory provides a physical explanation for the crossover behavior
observed in simulations.

Tube
�m ,n�

Radius
�nm�

Critical field
�V/nm�

Threshold
�V/nm� Reference

�10,0� 0.4 2 3.3 6

�8,0� 0.3 3.2 4 10

�11,0� 0.4 1.7 2 10

�16,0� 0.6 0.8 1.2 11
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Green functions. This implies that the density of states and
bound state energies do not depend on the chiral angle.

The density of states depends only on the trace of the
Green function. Since the trace of a matrix is invariant under
unitary transformations, the density of states derived from
Sm and Sm��� are identical.

The energies of the bound states of the mth band are the
poles of the chiral Green function, which occur when the
determinant of the denominator in Eq. �13� vanishes:

det�1 − Gm�m� = 0. �B6�

The matrix �m is a linear combination of two achiral
Green functions:

�m = �Gm+1 + �Gm−1. �B7�

As a result, the relation between �m and the chiral matrix
�m��� is identical to that between the Green functions, given
in Eq. �B5�.

Since the identity matrix is invariant under unitary trans-
formations, Eq. �B6� can be expressed in terms of the chiral
Green functions as

det�ei�z�/2�1 − Gm����m���e−i�z�/2� = 0. �B8�

The determinant of a matrix is invariant under unitary trans-
formations. Therefore, the determinants for the chiral and the
achiral Hamiltonian are equal, and lead to the same elec-
tronic spectra.

To summarize, neither the density of states nor the ener-
gies of the subgap states depend on the chiral angle of the
nanotube for the models studied in this paper. This is consis-
tent with known results for a free nanotube or a nanotube in
a uniform transverse electric field. In these models, there is
no dependence on the chiral angle when the effective Hamil-
tonian includes only terms linear in �z and �	 �or q and �m in
Fourier space�.

There are two ways in which a dependence on the chiral
angle might be introduced. First, one could introduce the
quadratic terms of the k ·p approximation to the effective
Hamiltonian with a scalar potential. Trigonal warping cannot
be removed with a unitary transformation, and leads to a
dispersion relation that depends on the chiral angle. A second
possibility is to introduce a potential that mixes states on
different sublattices. Even if the effective Hamiltonian is lin-
ear in �z and �	, the potential will introduce a term propor-
tional to �x, �y, or some linear combination of the two. In
this case, the chiral Hamiltonian H��� is no longer related to
an achiral operator by a unitary transformation, and the ei-
genvalue spectrum will depend on the chiral angle.

APPENDIX C: DERIVATION OF GREEN FUNCTIONS

Here, we derive the achiral Green functions for the unper-
turbed Hamiltonian. As discussed in Appendix B, the bound
state energies and the density of states do not depend on the
chiral angle, so we ignore it to simplify the calculation.

Because the free nanotube Hamiltonian is static and in-
variant under translations along the nanotube axis, the Green
functions can only depend on the difference between coordi-

nates: G�z ,z��=Gm�z−z��. We set the z� to zero when solving
for the Green function. The equation satisfied by Gm�z� is

�� − �y�m + iR�x�z�Gm��,z� = ��z� . �C1�

This linear differential equation can be solved by Fourier
transformation:

Gm��,z� = �
−�

� dq

2

e−iqzGm��,q� . �C2�

Using this expression for Gm�� ,z� in Eq. �C1�, the solution is

Gm��,q� =
� + �y�m + �xqR

�2 − �qR�2 − ��m�2 + i�
. �C3�

A convergence factor i� has been added to the denominator
to push the poles of the Green function into the appropriate
quadrants of the complex plane. This Green function will
satisfy boundary conditions for outgoing waves as z ap-
proaches ±�.

Since the potentials considered in this paper break trans-
lation symmetry along the nanotube axis, the real space
Green function is easier to use in calculations. Inverting the
Fourier transform for q gives

Gm��,z� = �
−�

� dq

2

eiqzGm��,q�

=
� + �y�m + sgn�z − z���x�m���

2iR�m���
ei�m����z−z��/R,

�C4�

where �m���=��2−�m
2 . This is equivalent to the Green func-

tion given in Eq. �10�.

APPENDIX D: JUSTIFICATION FOR IGNORING
TRANSITIONS TO BANDS WITH ��m �!1

Here, we argue that the error introduced by ignoring all
terms in the Dyson series that involve transitions to bands
other than the two nearest neighbors is small for energies
near the band edge.

To keep the expressions simple, we consider the full
Green function for z=z�=0 and suppress dependence on z,
z�, and �. In the delta function model, the series for the full
Green function in the lowest band is

S0 = G0 + u2G0�G+1 + G−1�G0

+ u4G0�G+1 + G−1�G0�G+1 + G−1�G0

+ u4G0�G+1G+2G+1 + G−1G−2G−1�G0 + O�u6� .

�D1�

All terms of the infinite series involving only transitions
to the two neighboring bands can be generated from a single
term, which we call ":

" = u2�G+1 + G−1�G0. �D2�

The O�u2n� term of the series can be expressed as �"�n

plus other terms that involve Green functions from bands
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other than m=0, ±1. For instance, the O�u4� terms can be
expressed as

G0"
2 + u4G0�G+1G+2G+1 + G−1G−2G−1�G0. �D3�

In the delta function model, the terms of the series are
products of the free nanotube Green functions in Eq. �10�
evaluated at z=z�=0:

Gn = −
i

2R2

� + �y�n

��2 − ��n�2
. �D4�

Near the band edge, ���0. Therefore, the denominator of
G0 is very small, but the denominator of Gn with n�0 is of
order unity. As a result, the largest terms of the series at any
order are those with the most factors of G0 in the product,
i.e., the terms generated by �"�n.

As an example, we compare the two O�u4� terms

G0G+1G0G+1G0 � � 1
��2 − ��0�2�3� 1

��2 − ��+1�2�2

�D5�

and

G0G+1G+2G+1G0

� � 1
��2 − ��0�2�2� 1

��2 − ��+1�2�2� 1
��2 − ��+2�2� .

�D6�

We have ignored all common factors, as well as the numera-
tors, which are matrix products of terms of order unity. Equa-
tion �D5� is generated by �"�2. It is greater than the second
term by a factor of ��2− ��+2�2 /��2− ��0�2, which is large
when � is near the band edge. For instance, if �� � / ��0 �
=0.9, the first term is larger than the second by a factor of
roughly 16.

Thus, the error introduced by discarding all terms except
those generated by " is small when the energy is near the
band edge. We approximate the full Green function by a
partial summation

S0 � G0

n=0

�

�"�n. �D7�

Multiplying the right term by ", we have

S0" = G0

n=0

�

�"�n+1 = S0 − G0. �D8�

This can be solved to give

S0 = G0�1 − "�−1. �D9�

�Formally, this series only converges when the eigenvalues
of " are less than 1.17,18�

Equation �14� gives the most general solution, with z
�z�, and its derivation closely parallels the steps in this ap-
pendix. If z=z�, Eq. �14� reduces to G0�1−"�−1.

APPENDIX E: BOUND STATE FOR ANY FINITE
POTENTIAL

Here, we show that subgap states exist for arbitrarily
weak fields in the delta function model of Sec. III.

If there are poles inside the band gap, then the denomina-
tor of Eq. �14� must vanish for some energy in the range
0����0. To simplify the expressions that follow, we define
#=� /�0 as the ratio of the particle energy to the unperturbed
band gap, and $=uL /4R as a dimensionless measure of the
potential strength. Poles will be solutions of the equation

0 = det�1 − $2 # + �y

�1 − #2� # + �y�1 + 1/�0�
��1 + 1/�0�2 − #2

+
# + �y�1 − 1/�0�
��1 − 1/�0�2 − #2�� . �E1�

After multiplying out all the terms, the resulting product is a
matrix of the form M=A�#�1+B�#��y. The determinant of
such a matrix is A�#�2−B�#�2. In this case, substituting �0

=1 /3 gives

A�#� = 1 − $2 �#2 + 4��4 − #2 + �#2 − 2��16 − #2

��1 − #2��16 − #2��4 − #2�
, �E2�

B�#� = $2
�16 − #2 − 5�4 − #2

��1 − #2��16 − #2��4 − #2�
# . �E3�

If there are bound states inside the band gap, then we
expect their energy to be close to the band edge when the
potential is small; i.e., if uL�R, then #�1. Letting
#=1−�, then Taylor expanding A�#�2−B�#�2=0 to O���
gives

0 = �90 − 36�5�3 − �5�$4� − 30�6��5 − 1�$2�� + O��3/2� .

�E4�

Neglecting the terms of order �3/2 and higher, this equation
has two solutions. One of these is �=0. This solution corre-
sponds to �=�0, which is not a pole of the full Green func-
tion in Eq. �14�. The other solution is

� = � $2

r − s$4�2

, �E5�

where r�0.991 and s�0.677. Thus, any nonzero applied
field produces a bound state inside the band gap, and the
binding energy of this state scales with the fourth power of
the potential strength when the potential is small. The singu-
larity in this expression is a consequence of truncating the
Taylor series. The expression diverges when $�1.01, but the
expression was derived assuming $�1. Figure 3 shows that
the energy of the subgap states has no singularities.
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