7,310 research outputs found

    NonLocal Systems of Balance Laws in Several Space Dimensions with Applications to Laser Technolog

    Get PDF
    For a class of systems of nonlinear and nonlocal balance laws in several space dimensions, we prove the local in time existence of solutions and their continuous dependence on the initial datum. The choice of this class is motivated by a new model devoted to the description of a metal plate being cut by a laser beam. Using realistic parameters, solutions to this model obtained through numerical integrations meet qualitative properties of real cuts. Moreover, the class of equations considered comprises a model describing the dynamics of solid particles along a conveyor belt

    Smooth and discontinuous junctions in the p-system

    Get PDF
    Consider the p-system describing the subsonic flow of a fluid in a pipe with section a = a(x). We prove that the resulting Cauchy problem generates a Lipschitz semigroup, provided the total variation of the initial datum and the oscillation of a are small. An explicit estimate on the bound of the total variation of a is provided, showing that at lower fluid speeds, higher total variations of a are acceptable. An example shows that the bound on TV(a) is mandatory, for otherwise the total variation of the solution may grow arbitrarily.Comment: 27 pages, 4 figure

    Coupling conditions for the 3x3 Euler system

    Full text link
    This paper is devoted to the extension to the full 3Ă—33\times3 Euler system of the basic analytical properties of the equations governing a fluid flowing in a duct with varying section. First, we consider the Cauchy problem for a pipeline consisting of 2 ducts joined at a junction. Then, this result is extended to more complex pipes. A key assumption in these theorems is the boundedness of the total variation of the pipe's section. We provide explicit examples to show that this bound is necessary.Comment: 21 pages, 6 figure
    • …
    corecore