309 research outputs found

    Weakly invasive metrology: quantum advantage and physical implementations

    Get PDF

    Anomalous Behaviors of Quantum Emitters in Non-Hermitian Baths

    Get PDF
    Both non-Hermitian systems and the behaviour of emitters coupled to structured baths have been studied intensely in recent years. Here we study the interplay of these paradigmatic settings. In a series of examples, we show that a single quantum emitter coupled to a non-Hermitian bath displays a number of unconventional behaviours, many without Hermitian counterpart. We first consider a unidirectional hopping lattice whose complex dispersion forms a loop. We identify peculiar bound states inside the loop as a manifestation of the non-Hermitian skin effect. In the same setting, emitted photons may display spatial amplification markedly distinct from free propagation, which can be understood with the help of the generalized Brillouin zone. We then consider a nearest-neighbor lattice with alternating loss. We find that the long-time emitter decay always follows a power law, which is usually invisible for Hermitian baths. Our work points toward a rich landscape of anomalous quantum emitter dynamics induced by non-Hermitian baths

    Bound states and photon emission in non-Hermitian nanophotonics

    Get PDF
    We establish a general framework for studying the bound states and the photon-emission dynamics of quantum emitters coupled to structured nanophotonic lattices with engineered dissipation (loss). In the single-excitation sector, the system can be described exactly by a non-Hermitian formalism. We have pointed out in the accompanying letter [Gong \emph{et al}., arXiv:2205.05479] that a single emitter coupled to a one-dimensional non-Hermitian lattice may already exhibit anomalous behaviors without Hermitian counterparts. Here we provide further detail on these observations. We also present several additional examples on the cases with multiple quantum emitters or in higher dimensions. Our work unveils the tip of the iceberg of the rich non-Hermitian phenomena in dissipative nanophotonic systems

    Stroboscopic quantum optomechanics

    Get PDF
    We consider an optomechanical cavity that is driven stroboscopically by a train of short pulses. By suitably choosing the inter-pulse spacing we show that ground-state cooling and mechanical squeezing can be achieved, even in the presence of mechanical dissipation and for moderate radiation-pressure interaction. We provide a full quantum-mechanical treatment of stroboscopic backaction-evading measurements, for which we give a simple analytic insight, and discuss preparation and verification of squeezed mechanical states. We further consider stroboscopic driving of a pair of non-interacting mechanical resonators coupled to a common cavity field, and show that they can be simultaneously cooled and entangled. Stroboscopic quantum optomechanics extends measurement-based quantum control of mechanical systems beyond the good-cavity limit.Comment: 9 + 4 pages, 5 figure

    Quantum noise spectra for periodically driven cavity optomechanics

    Get PDF
    A growing number of experimental set-ups in cavity optomechanics exploit periodically driven fields. However, such set-ups are not amenable to analysis using simple, yet powerful, closed-form expressions of linearized optomechanics, which have provided so much of our present understanding of experimental optomechanics. In the present paper, we formulate a new method to calculate quantum noise spectra in modulated optomechanical systems, which we analyze, compare, and discuss with two other recently proposed solutions: we term these (i) frequency-shifted operators (ii) Floquet and (iii) iterative analysis. We prove that (i) and (ii) yield equivalent noise spectra, and find that (iii) is an analytical approximation to (i) for weak modulations. We calculate the noise spectra of a doubly-modulated system describing experiments of levitated particles in hybrid electro-optical traps. We show excellent agreement with Langevin stochastic simulations in the thermal regime and predict squeezing in the quantum regime. Finally, we reveal how experimentally inaccessible spectral components of a modulated system can be measured in heterodyne detection through an appropriate choice of modulation frequencies

    Zearalenone production and growth in drinking water inoculated with Fusarium graminearum

    Get PDF
    Production of the mycotoxin zearalenone (ZEN) was examined in drinking water inoculated with Fusarium graminearum. The strain employed was isolated from a US water distribution system. ZEN was purified with an immunoaffinity column and quantified by high-performance liquid chromatography (HPLC) with fluorescence detection. The extracellular yield of ZEN was 15.0 ng l−1. Visual growth was observed. Ergosterol was also indicative of growth and an average of 6.2 μg l−1 was obtained. Other compounds were also detected although remain unidentified. There is no equivalent information available. More work is required on metabolite expression in water as mycotoxins have consequences for human and animal health. The levels detected in this study were low. Water needs to be accepted as a potential source as it attracts high quality demands in terms of purity.Fundação para a Ciência e a Tecnologia (FCT

    Solution to phenylbutazone purity challenge

    Full text link

    The Photometric LSST Astronomical Time-series Classification Challenge PLAsTiCC: Selection of a Performance Metric for Classification Probabilities Balancing Diverse Science Goals

    Get PDF
    Classification of transient and variable light curves is an essential step in using astronomical observations to develop an understanding of the underlying physical processes from which they arise. However, upcoming deep photometric surveys, including the Large Synoptic Survey Telescope (LSST), will produce a deluge of low signal-to-noise data for which traditional type estimation procedures are inappropriate. Probabilistic classification is more appropriate for such data but is incompatible with the traditional metrics used on deterministic classifications. Furthermore, large survey collaborations like LSST intend to use the resulting classification probabilities for diverse science objectives, indicating a need for a metric that balances a variety of goals. We describe the process used to develop an optimal performance metric for an open classification challenge that seeks to identify probabilistic classifiers that can serve many scientific interests. The Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC) aims to identify promising techniques for obtaining classification probabilities of transient and variable objects by engaging a broader community beyond astronomy. Using mock classification probability submissions emulating realistically complex archetypes of those anticipated of PLAsTiCC, we compare the sensitivity of two metrics of classification probabilities under various weighting schemes, finding that both yield results that are qualitatively consistent with intuitive notions of classification performance. We thus choose as a metric for PLAsTiCC a weighted modification of the cross-entropy because it can be meaningfully interpreted in terms of information content. Finally, we propose extensions of our methodology to ever more complex challenge goals and suggest some guiding principles for approaching the choice of a metric of probabilistic data products
    • …
    corecore