11 research outputs found

    Functional expression of NF1 tumor suppressor protein: association with keratin intermediate filaments during the early development of human epidermis

    Get PDF
    BACKGROUND: NF1 refers to type 1 neurofibromatosis syndrome, which has been linked with mutations of the large NF1 gene. NF1 tumor suppressor protein, neurofibromin, has been shown to regulate ras: the NF1 protein contains a GTPase activating protein (GAP) related domain which functions as p21rasGAP. Our studies have previously demonstrated that the NF1 protein forms a high affinity association with cytokeratin 14 during the formation of desmosomes and hemidesmosomes in cultured keratinocytes. METHODS: The expression of NF1 protein was studied in developing human epidermis using western transfer analysis, indirect immunofluorescence, confocal laser scanning microscopy, immunoelectron microscopy, and in situ hybridization. RESULTS: The expression of NF1 protein was noted to be highly elevated in the periderm at 8 weeks estimated gestational age (EGA) and in the basal cells at 8–14 weeks EGA. During this period, NF1 protein was associated with cytokeratin filaments terminating to desmosomes and hemidesmosomes. NF1 protein did not display colocalization with α-tubulin or actin of the cytoskeleton, or with adherens junction proteins. CONCLUSIONS: These results depict an early fetal period when the NF1 tumor suppressor is abundantly expressed in epidermis and associated with cytokeratin filaments. This period is characterized by the initiation of differentiation of the basal cells, maturation of the basement membrane zone as well as accentuated formation of selected cellular junctions. NF1 tumor suppressor may function in the regulation of epidermal histogenesis via controlling the organization of the keratin cytoskeleton during the assembly of desmosomes and hemidesmosomes

    Keratinocytes as Depository of Ammonium-Inducible Glutamine Synthetase: Age- and Anatomy-Dependent Distribution in Human and Rat Skin

    Get PDF
    In inner organs, glutamine contributes to proliferation, detoxification and establishment of a mechanical barrier, i.e., functions essential for skin, as well. However, the age-dependent and regional peculiarities of distribution of glutamine synthetase (GS), an enzyme responsible for generation of glutamine, and factors regulating its enzymatic activity in mammalian skin remain undisclosed. To explore this, GS localization was investigated using immunohistochemistry and double-labeling of young and adult human and rat skin sections as well as skin cells in culture. In human and rat skin GS was almost completely co-localized with astrocyte-specific proteins (e.g. GFAP). While GS staining was pronounced in all layers of the epidermis of young human skin, staining was reduced and more differentiated among different layers with age. In stratum basale and in stratum spinosum GS was co-localized with the adherens junction component ß-catenin. Inhibition of, glycogen synthase kinase 3β in cultured keratinocytes and HaCaT cells, however, did not support a direct role of ß-catenin in regulation of GS. Enzymatic and reverse transcriptase polymerase chain reaction studies revealed an unusual mode of regulation of this enzyme in keratinocytes, i.e., GS activity, but not expression, was enhanced about 8–10 fold when the cells were exposed to ammonium ions. Prominent posttranscriptional up-regulation of GS activity in keratinocytes by ammonium ions in conjunction with widespread distribution of GS immunoreactivity throughout the epidermis allows considering the skin as a large reservoir of latent GS. Such a depository of glutamine-generating enzyme seems essential for continuous renewal of epidermal permeability barrier and during pathological processes accompanied by hyperammonemia

    Telomere maintenance mechanisms in malignant peripheral nerve sheath tumors: expression and prognostic relevance

    No full text
    This study investigated the prevalence and the prognostic relevance of the 2 known telomere maintenance mechanisms (TMMs), telomerase activity (TA) and alternative lengthening of telomeres (ALT), in malignant peripheral nerve sheath tumors (MPNST). In 57 specimens from 49 patients with MPNST (35 sporadic, 14 neurofibromatosis type 1-related), TA was determined using the telomeric repeat amplification protocol, and ALT was detected by assaying ALT-associated promyelocytic leukemia bodies (APB) and terminal restriction fragment (TRF) length distribution. TA or ALT (defined on the basis of APB) alone was found in 24.6% or 26.3% of the lesions, respectively, whereas 6 cases (10.5%) were TA+/ALT+. A concordance between APB and TRF results in defining the ALT status was observed in 44 of 57 cases (77.2%; P < .0001). TA was more frequently expressed in samples from patients with neurofibromatosis type 1 than in those with sporadic disease (60% vs 29.4%, P = 0.087). In the overall series, TA proved to be prognostic for 5-year disease-specific death (hazard ratio, 3.78; 95% confidence interval [CI], 1.60–8.95; P = .002), even when adjusted for the presence of neurofibromatosis type 1 (hazard ratio, 4.22; 95% CI, 1.804–9.874; P = .001) and margin status after surgery (hazard ratio, 5.78; 95% CI, 2.19–15.26; P < .001). Conversely, ALT did not significantly affect clinical outcome of MPNST using either APB expression (hazard ratio, 1.25; 95% CI 0.54–2.89; P = 0.605) or TRF distribution (hazard ratio, 0.57; 95% CI, 0.17–1.96; P = .375) as the detection approach. Our results indicate for the first time that both TMMs, TA and ALT, are present in MPNST and differentially affect patient prognosis

    Taurine in Neurotransmission

    No full text
    corecore