114 research outputs found

    Proteinlike behavior of a spin system near the transition between ferromagnet and spin glass

    Full text link
    A simple spin system is studied as an analog for proteins. We investigate how the introduction of randomness and frustration into the system effects the designability and stability of ground state configurations. We observe that the spin system exhibits protein-like behavior in the vicinity of the transition between ferromagnet and spin glass. Our results illuminate some guiding principles in protein evolution.Comment: 12 pages, 4 figure

    Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain

    Get PDF
    AbstractAngiotensin-converting enzyme-2 (ACE2) is a regulatory protein of the renin–angiotensin system (RAS) and a receptor for the causative agent of severe-acute respiratory syndrome (SARS), the SARS-coronavirus. We have previously shown that ACE2 can be shed from the cell surface in response to phorbol esters by a process involving TNF-α converting enzyme (TACE; ADAM17). In this study, we demonstrate that inhibitors of calmodulin also stimulate shedding of the ACE2 ectodomain, a process at least partially mediated by a metalloproteinase. We also show that calmodulin associates with ACE2 and that this interaction is decreased by calmodulin inhibitors

    Capturing, sharing and analysing biophysical data from protein engineering and protein characterization studies

    Get PDF
    Large amounts of data are being generated annually on the connection between the sequence, structure and function of proteins using site-directed mutagenesis, protein design and directed evolution techniques. These data provide the fundamental building blocks for our understanding of protein function, molecular biology and living organisms in general. However, much experimental data are never deposited in databases and is thus ‘lost’ in journal publications or in PhD theses. At the same time theoretical scientists are in need of large amounts of experimental data for benchmarking and calibrating novel predictive algorithms, and theoretical progress is therefore often hampered by the lack of suitable data to validate or disprove a theoretical assumption. We present PEAT (Protein Engineering Analysis Tool), an application that integrates data deposition, storage and analysis for researchers carrying out protein engineering projects or biophysical characterization of proteins. PEAT contains modules for DNA sequence manipulation, primer design, fitting of biophysical characterization data (enzyme kinetics, circular dichroism spectroscopy, NMR titration data, etc.), and facilitates sharing of experimental data and analyses for a typical university-based research group. PEAT is freely available to academic researchers at http://enzyme.ucd.ie/PEAT

    Design, expression and characterization of mutants of fasciculin optimized for interaction with its target, acetylcholinesterase

    Get PDF
    Predicting mutations that enhance protein–protein affinity remains a challenging task, especially for high-affinity complexes. To test our capability to improve the affinity of such complexes, we studied interaction of acetylcholinesterase with the snake toxin, fasciculin. Using the program ORBIT, we redesigned fasciculin's sequence to enhance its interactions with Torpedo californica acetylcholinesterase. Mutations were predicted in 5 out of 13 interfacial residues on fasciculin, preserving most of the polar inter-molecular contacts seen in the wild-type toxin/enzyme complex. To experimentally characterize fasciculin mutants, we developed an efficient strategy to over-express the toxin in Escherichia coli, followed by refolding to the native conformation. Despite our predictions, a designed quintuple fasciculin mutant displayed reduced affinity for the enzyme. However, removal of a single mutation in the designed sequence produced a quadruple mutant with improved affinity. Moreover, one designed mutation produced 7-fold enhancement in affinity for acetylcholinesterase. This led us to reassess our criteria for enhancing affinity of the toxin for the enzyme. We observed that the change in the predicted inter-molecular energy, rather than in the total energy, correlates well with the change in the experimental free energy of binding, and hence may serve as a criterion for enhancement of affinity in protein–protein complexes

    In Vivo Delivery of Gremlin siRNA Plasmid Reveals Therapeutic Potential against Diabetic Nephropathy by Recovering Bone Morphogenetic Protein-7

    Get PDF
    Diabetic nephropathy is a complex and poorly understood disease process, and our current treatment options are limited. It remains critical, then, to identify novel therapeutic targets. Recently, a developmental protein and one of the bone morphogenetic protein antagonists, Gremlin, has emerged as a novel modulator of diabetic nephropathy. The high expression and strong co-localization with transforming growth factor- β1 in diabetic kidneys suggests a role for Gremlin in the pathogenesis of diabetic nephropathy. We have constructed a gremlin siRNA plasmid and have examined the effect of Gremlin inhibition on the progression of diabetic nephropathy in a mouse model. CD-1 mice underwent uninephrectomy and STZ treatment prior to receiving weekly injections of the plasmid. Inhibition of Gremlin alleviated proteinuria and renal collagen IV accumulation 12 weeks after the STZ injection and inhibited renal cell proliferation and apoptosis. In vitro experiments, using mouse mesangial cells, revealed that the transfect ion of gremlin siRNA plasmid reversed high glucose induced abnormalities, such as increased cell proliferation and apoptosis and increased collagen IV production. The decreased matrix metalloprotease level was partially normalized by transfection with gremlin siRNA plasmid. Additionally, we observed recovery of bone morphogenetic protein-7 signaling activity, evidenced by increases in phosphorylated Smad 5 protein levels. We conclude that inhibition of Gremlin exerts beneficial effects on the diabetic kidney mainly through maintenance of BMP-7 activity and that Gremlin may serve as a novel therapeutic target in the management of diabetic nephropathy

    The Role for HNF-1β-Targeted Collectrin in Maintenance of Primary Cilia and Cell Polarity in Collecting Duct Cells

    Get PDF
    Collectrin, a homologue of angiotensin converting enzyme 2 (ACE2), is a type I transmembrane protein, and we originally reported its localization to the cytoplasm and apical membrane of collecting duct cells. Recently, two independent studies of targeted disruption of collectrin in mice resulted in severe and general defects in renal amino acid uptake. Collectrin has been reported to be under the transcriptional regulation by HNF-1α, which is exclusively expressed in proximal tubules and localized at the luminal side of brush border membranes. The deficiency of collectrin was associated with reduction of multiple amino acid transporters on luminal membranes. In the current study, we describe that collectrin is a target of HNF-1β and heavily expressed in the primary cilium of renal collecting duct cells. Collectrin is also localized in the vesicles near the peri-basal body region and binds to γ-actin-myosin II-A, SNARE, and polycystin-2-polaris complexes, and all of these are involved in intracellular and ciliary movement of vesicles and membrane proteins. Treatment of mIMCD3 cells with collectrin siRNA resulted in defective cilium formation, increased cell proliferation and apoptosis, and disappearance of polycystin-2 in the primary cilium. Suppression of collectrin mRNA in metanephric culture resulted in the formation of multiple longitudinal cysts in ureteric bud branches. Taken together, the cystic change and formation of defective cilium with the interference in the collectrin functions would suggest that it is necessary for recycling of the primary cilia-specific membrane proteins, the maintenance of the primary cilia and cell polarity of collecting duct cells. The transcriptional hierarchy between HNF-1β and PKD (polycystic kidney disease) genes expressed in the primary cilia of collecting duct cells has been suggested, and collectrin is one of such HNF-1β regulated genes

    A Generic Program for Multistate Protein Design

    Get PDF
    Some protein design tasks cannot be modeled by the traditional single state design strategy of finding a sequence that is optimal for a single fixed backbone. Such cases require multistate design, where a single sequence is threaded onto multiple backbones (states) and evaluated for its strengths and weaknesses on each backbone. For example, to design a protein that can switch between two specific conformations, it is necessary to to find a sequence that is compatible with both backbone conformations. We present in this paper a generic implementation of multistate design that is suited for a wide range of protein design tasks and demonstrate in silico its capabilities at two design tasks: one of redesigning an obligate homodimer into an obligate heterodimer such that the new monomers would not homodimerize, and one of redesigning a promiscuous interface to bind to only a single partner and to no longer bind the rest of its partners. Both tasks contained negative design in that multistate design was asked to find sequences that would produce high energies for several of the states being modeled. Success at negative design was assessed by computationally redocking the undesired protein-pair interactions; we found that multistate design's accuracy improved as the diversity of conformations for the undesired protein-pair interactions increased. The paper concludes with a discussion of the pitfalls of negative design, which has proven considerably more challenging than positive design
    corecore