59 research outputs found

    Voltage controlled nuclear polarization switching in a single InGaAs quantum dot

    Full text link
    Sharp threshold-like transitions between two stable nuclear spin polarizations are observed in optically pumped individual InGaAs self-assembled quantum dots embedded in a Schottky diode when the bias applied to the diode is tuned. The abrupt transitions lead to the switching of the Overhauser field in the dot by up to 3 Tesla. The bias-dependent photoluminescence measurements reveal the importance of the electron-tunneling-assisted nuclear spin pumping. We also find evidence for the resonant LO-phonon-mediated electron co-tunneling, the effect controlled by the applied bias and leading to the reduction of the nuclear spin pumping rate.Comment: 5 pages, 2 figures, submitted to Phys Rev

    Optically tunable nuclear magnetic resonance in a single quantum dot

    No full text
    We report optically detected nuclear magnetic resonance (ODNMR) measurements on small ensembles of nuclear spins in single GaAs quantum dots. Using ODNMR we make direct measurements of the inhomogeneous Knight field from a photoexcited electron which acts on the nuclei in the dot. The resulting shifts of the NMR peak can be optically controlled by varying the electron occupancy and its spin orientation, and lead to strongly asymmetric line shapes at high optical excitation. The all-optical control of the NMR line shape will enable position-selective control of small groups of nuclear spins inside a dot

    Overhauser effect in individual InP/GaInP dots

    Full text link
    Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a wide range of external magnetic fields B_ext=0-5T by circularly polarized optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of the nuclear spin on the spin pumping efficiency. This feedback, produced by the Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when the Overhauser field cancels the external field. This counter-intuitive result is shown to arise from the opposite contribution of the electron and hole Zeeman splittings to the total exciton Zeeman energy

    Overhauser effect in individual InP/GaInP dots

    Get PDF
    Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a wide range of external magnetic fields B_ext=0-5T by circularly polarized optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of the nuclear spin on the spin pumping efficiency. This feedback, produced by the Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when the Overhauser field cancels the external field. This counter-intuitive result is shown to arise from the opposite contribution of the electron and hole Zeeman splittings to the total exciton Zeeman energy

    Pumping of nuclear spins by the optical solid effect in a quantum dot

    Get PDF
    We demonstrate that efficient optical pumping of nuclear spins in semiconductor quantum dots (QDs) can be achieved by resonant pumping of optically "forbidden" transitions. This process corresponds to one-to-one conversion of a photon absorbed by the dot into a polarized nuclear spin, which also has potential for initialization of hole spin in QDs. Pumping via the "forbidden" transition is a manifestation of the "optical solid effect", an optical analogue of the effect previously observed in electron spin resonance experiments in the solid state. We find that by employing this effect, nuclear polarization of 65% can be achieved, the highest reported so far in optical orientation studies in QDs. The efficiency of the spin pumping exceeds that employing the allowed transition, which saturates due to the low probability of electron-nuclear spin flip-flop.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let

    Suppression of nuclear spin diffusion at a GaAs/AlGaAs interface measured with a single quantum dot nano-probe

    Full text link
    Nuclear spin polarization dynamics are measured in optically pumped individual GaAs/AlGaAs interface quantum dots by detecting the time-dependence of the Overhauser shift in photoluminescence (PL) spectra. Long nuclear polarization decay times of ~ 1 minute have been found indicating inefficient nuclear spin diffusion from the GaAs dot into the surrounding AlGaAs matrix in externally applied magnetic field. A spin diffusion coefficient two orders lower than that previously found in bulk GaAs is deduced.Comment: 5 pages, 3 figures, submitted to Phys Rev

    Full coherent control of nuclear spins in an optically pumped single quantum dot

    Full text link
    Highly polarized nuclear spins within a semiconductor quantum dot (QD) induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of QD-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond time-scale of Overhauser fields of the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using full coherent control of an ensemble of 10^3-10^4 optically polarized nuclear spins by sequences of short radio-frequency (rf) pulses. These results open the way to a new class of experiments using rf techniques to achieve highly-correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-micro K nuclear spin temperatures, rapid adiabatic passage, and spin squeezing

    Nuclear Spin Effects in Semiconductor Quantum Dots

    Get PDF
    The interaction of an electronic spin with its nuclear environment, an issue known as the central spin problem, has been the subject of considerable attention due to its relevance for spin-based quantum computation using semiconductor quantum dots. Independent control of the nuclear spin bath using nuclear magnetic resonance techniques and dynamic nuclear polarization using the central spin itself offer unique possibilities for manipulating the nuclear bath with significant consequences for the coherence and controlled manipulation of the central spin. Here we review some of the recent optical and transport experiments that have explored this central spin problem using semiconductor quantum dots. We focus on the interaction between 104−10610^4-10^6 nuclear spins and a spin of a single electron or valence-band hole. We also review the experimental techniques as well as the key theoretical ideas and the implications for quantum information science.Physic

    Long nuclear spin polarization decay times controlled by optical pumping in individual quantum dots

    Get PDF
    Nuclear polarization dynamics are measured in the nuclear spin bistability regime in a single optically pumped InGaAs/GaAs quantum dot. The controlling role of nuclear spin diffusion from the dot into the surrounding material is revealed in pump-probe measurements of the nonlinear nuclear spin dynamics. We measure nuclear spin polarization decay times in the range of 0.2-5 s, strongly dependent on the optical pumping time. The long nuclear spin decay arises from polarization of the material surrounding the dot by spin diffusion for long (>5s) pumping times. The time-resolved methods allow the detection of the unstable nuclear polarization state in the bistability regime otherwise undetectable in cw experiments

    Quantum key distribution system in standard telecommunications fiber using a short wavelength single-photon source

    Full text link
    A demonstration of the principles of quantum key distribution is performed using a single-photon source in a proof of concept test-bed over a distance of 2 km in standard telecommunications optical fiber. The single-photon source was an optically-pumped quantum dot in a microcavity emitting at a wavelength of 895 nm. Characterization of the quantum key distribution parameters was performed at a range of different optical excitation powers. An investigation of the effect of varying the optical excitation power of the quantum dot microcavity on the quantum bit error rate and cryptographic key exchange rate of the system are presented.Comment: Final manuscript version, some grammatical differences from the published version. 26 pages including 7 figures
    • …
    corecore