647 research outputs found
An Analytical Model of a Thermally Excited Microcantilever Vibrating Laterally in a Viscous Fluid
To achieve higher quality factors (Q) for microcantilevers used in liquid-phase sensing applications, recent studies have explored the use of the lateral (in-plane) flexural mode. In particular, we have recently shown that this mode may be excited electrothermally using integrated heating resistors near the micro cantilever support, and that the resulting increase in Q helps to make low-ppb limits of detection a possibility in liquids. However, because the use of electrothermally excited, liquid-phase, microcantilever-based sensors in lateral flexure is relatively new, theoretical models are lacking. Therefore, we present here a new analytical model for predicting the vibratory response of these devices. The model is also used to successfully confirm the validity of our previously derived Q formula, which was based on a single-degree-of-freedom (SDOF) model and a harmonic tip force. Comparisons with experimental data show that the present model and, thus, the analytical formula provide excellent Q estimates for sufficiently thin beams vibrating laterally in water and reasonable upper-bound estimates for thicker beams
Staged cost optimization of urban storm drainage systems based on hydraulic performance in a changing environment
International audienceUrban flooding causes large economic losses, property damage and loss of lives. The impact of environmental changes mainly, the urbanization and the climatic change leads to increased runoff and increased peak flows which the drainage system must be able to cope with to overcome possible damage and inconveniences caused by the induced flooding. Allowing for detention storage to compliment the capacity of the drainage system network is one of the approaches to reduce urban floods. The traditional practice was to design systems against stationary environmental forcings ? including design rainfall, landuse, etc. Due to the rapid change in climate-environment, this approach is no longer economically viable and safe, and explicit consideration of changes that gradually take place during the life-time of the drainage system is warranted. In this paper, a staged cost optimization tool based on the hydraulic performance of the drainage system is presented. A one dimensional hydraulic model is used for hydraulic evaluation of the network together with a genetic algorithm based optimization tool to determine optimal intervention timings and amounts throughout the lifespan of the drainage network. The model was applied in a case study area in the city of Porto Alegre, Brazil. It was concluded that considerable financial savings and/or additional level of flood-safety can be achieved by approaching the design problem as a staged plan rather than one-off scheme
Overlapping but distinct sequences play roles in the insulator and promoter activities of the drosophila BEAF-dependent scs⇔ insulator
Copyright © 2020 by the Genetics Society of America. Chromatin domain insulators are thought to help partition the genome into genetic units called topologically associating domains (TADs). In Drosophila, TADs are often separated by inter-TAD regions containing active housekeeping genes and associated insulator binding proteins. This raises the question of whether insulator binding proteins are involved primarily in chromosomal TAD architecture or gene activation, or if these two activities are linked. The Boundary Element-Associated Factor of 32 kDa (BEAF-32, or BEAF for short) is usually found in inter-TADs. BEAF was discovered based on binding to the scs’ insulator, and is important for the insulator activity of scs’ and other BEAF binding sites. There are divergent promoters in scs’ with a BEAF binding site by each. Here, we dissect the scs’ insulator to identify DNA sequences important for insulator and promoter activity, focusing on the half of scs’ with a high affinity BEAF binding site. We find that the BEAF binding site is important for both insulator and promoter activity, as is another sequence we refer to as LS4. Aside from that, different sequences play roles in insulator and promoter activity. So while there is overlap and BEAF is important for both, insulator and promoter activity can be separated
Relationship between temporary emotion of students and performance in learning through comparing facial expression analytics
This paper presents a study on temporary emotion of students and their performance related to learning activities. This paper elucidates different kinds of facial expressions elicited during the activities: quiz and a movie trailer with the help of existing facial expression analyzing applications. The user’s expressions are recorded as video while watching the movie trailer and doing the quiz. The video is processed by different applications which gives the score for different emotions. The results obtained are studied to find which emotion is mostly prevalent among the user in different situations. From this study, it is shown that students experience seemingly different emotions during the activity. The emotions they portrayed were confusion, sadness, anger and neutral. This study explores the use of affective computing for further comprehension of students’ emotion in learning environment
A Case of Myocardial Rupture on the Background of Coronary Artery Thrombosis
Myocardial infarction infrequently complicates with the rupture of myocardial free wall in 6.2% of cases. It represents the second cause of death after cardiogenic shock, and accounts for as much as 15% of in-hospital mortality. The authors here report a case of an 80 year old male with the cause of death as myocardial rupture on the background of coronary artery thrombosis.
J-GMC-N | Volume 11 | Issue 01 | January-June 2018, Page: 68-7
Equity implications of rice fortification: a modelling study from Nepal.
OBJECTIVE: To model the potential impact and equity impact of fortifying rice on nutritional adequacy of different subpopulations in Nepal. DESIGN: Using 24-h dietary recall data and a household consumption survey, we estimated: rice intakes; probability of adequacy (PA) of eight micronutrients commonly fortified in rice (vitamin A, niacin (B3), pyridoxine (B6), cobalamin (B12), thiamin (B1), folate (B9), Fe and Zn) plus riboflavin (B2), vitamin C and Ca and mean probability of adequacy (MPA) of these micronutrients. We modelled: no fortification; fortification of purchased rice, averaged across all households and in rice-buying households only. We compared adequacy increases between population subgroups. SETTING: (i) Dhanusha and Mahottari districts of Nepal (24-h recall) and (ii) all agro-ecological zones of Nepal (consumption data). PARTICIPANTS: (i) Pregnant women (n 128), mothers-in-law and male household heads; (ii) households (n 4360). RESULTS: Unfortified diets were especially inadequate in vitamins B12, A, B9, Zn and Fe. Fortification of purchased rice in rice-purchasing households increased PA > 0·9 for thiamin, niacin, B6, folate and Zn, but B12 and Fe remained inadequate even after fortification (PA range 0·3-0·9). Pregnant women's increases exceeded men's for thiamin, niacin, B6, folate and MPA; men had larger gains in vitamin A, B12 and Zn. Adequacy improved more in the hills (coefficient 0·08 (95 % CI 0·05, 0·10)) and mountains (coefficient 0·07 (95 % CI 0·01, 0·14)) but less in rural areas (coefficient -0·05 (95 % CI -0·09, -0·01)). CONCLUSIONS: Consumption of purchased fortified rice improves adequacy and gender equity of nutrient intake, especially in non-rice-growing areas
- …