446 research outputs found

    Marginalizing experience: A critical analysis of public discourse surrounding stem cell research in Australia (2005-6).

    Get PDF
    Over the past decade, stem cell science has generated considerable public and political debate. These debates tend to focus on issues concerning the protection of nascent human life and the need to generate medical and therapeutic treatments for the sick and vulnerable. The framing of the public debate around these issues not only dichotomises and oversimplifies the issues at stake, but tends to marginalise certain types of voices, such as the women who donate their eggs and/or embryos to stem cell research and the patients who might benefit from its potential clinical outcomes. This paper draws on empirical research conducted on a recent stem cell policy episode in Australia. From the qualitative examination of 109 newspaper opinion editorials and twenty-three in-depth interviews, it is argued that these voices are marginalised because they are based on discourses that have less epistemological status in public debate. Our results suggest that the personal experiences of women and patients are marginalised by the alliances that form between more powerful discourse communities that use science as a source of authority and legitimation. It is argued that members of these communities establish legitimacy and assert authority in public debate by discursively deploying science in claims that marginalise other epistemologies. Implications are discussed along with suggestions for a more enriched and inclusive public debate. Keywords Stem cellsCloningBioethicsPublic polic

    Hollow fiber membrane systems for advanced life support systems

    Get PDF
    The practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications is described. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing; breadboard hardware was manufactured and tested, and the physical properties of the hollow fiber membrane assemblies are characterized

    Time-dependent R-matrix theory applied to two-photon double ionization of He

    Get PDF
    We introduce a time-dependent R-matrix theory generalised to describe double ionization processes. The method is used to investigate two-photon double ionization of He by intense XUV laser radiation. We combine a detailed B-spline-based wavefunction description in a extended inner region with a single-electron outer region containing channels representing both single ionization and double ionization. A comparison of wavefunction densities for different box sizes demonstrates that the flow between the two regions is described with excellent accuracy. The obtained two-photon double ionization cross sections are in excellent agreement with other cross sections available. Compared to calculations fully contained within a finite inner region, the present calculations can be propagated over the time it takes the slowest electron to reach the boundary.Comment: 6 pages, 4 figure

    Time delay between photoemission from the 2p and 2s subshells of Neon

    Get PDF
    The R-Matrix incorporating Time (RMT) method is a new method for solving the time-dependent Schroedinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We have employed the RMT method to investigate the time delay in the photoemission of an electron liberated from a 2p orbital in a neon atom with respect to one released from a 2s orbital following absorption of an attosecond XUV pulse. Time delays due to XUV pulses in the range 76-105 eV are presented. For an XUV pulse at the experimentally relevant 105.2 eV, we calculate the time delay to be 10.2 +/- 1.3 attoseconds, somewhat larger than estimated by other theoretical calculations, but still a factor two smaller than experiment. We repeated the calculation for a photon energy of 89.8 eV with a larger basis set capable of modelling correlated-electron dynamics within the neon atom and the residual Ne(+) ion. A time delay of 14.5 +/- 1.5 attoseconds was observed, compared to a 16.7 +/- 1.5 attosecond result using a single-configuration representation of the residual Ne(+) ion.Comment: 4 pages, 3 figures, 1 tabl

    Time-dependent restricted active space Configuration Interaction for the photoionization of many-electron atoms

    Full text link
    We introduce the time-dependent restricted active space Configuration Interaction method to solve the time-dependent Schr\"odinger equation for many-electron atoms, and particularly apply it to the treatment of photoionization processes in atoms. The method is presented in a very general formulation and incorporates a wide range of commonly used approximation schemes, like the single-active electron approximation, time-dependent Configuration Interaction with single-excitations, or the time-dependent R-matrix method. We proof the applicability of the method by calculating the photoionization cross sections of Helium and Beryllium, as well as the X-ray--IR pump-probe ionization in BerylliumComment: 12 pages, 9 figure

    A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants

    Get PDF
    This paper presents a nW power management unit (PMU) for an autonomous wireless sensor that sustains itself by harvesting energy from the endocochlear potential (EP), the 70-100 mV electrochemical bio-potential inside the mammalian ear. Due to the anatomical constraints inside the inner ear, the total extractable power from the EP is limited close to 1.1-6.25 nW. A nW boost converter is used to increase the input voltage (30-55 mV) to a higher voltage (0.8-1.1 V) usable by CMOS circuits in the sensor. A pW charge pump circuit is used to minimize the leakage in the boost converter. Furthermore, ultralow-power control circuits consisting of digital implementations of input impedance adjustment circuits and zero current switching circuits along with Timer and Reference circuits keep the quiescent power of the PMU down to 544 pW. The designed boost converter achieves a peak power conversion efficiency of 56%. The PMU can sustain itself, and a duty-cyled ultralow-power load while extracting power from the EP of a live guinea pig. The PMU circuits have been implemented on a 0.18- μm CMOS process.Semiconductor Research Corporation. Focus Center for Circuit and System Solutions (C2S2)Interconnect Focus Center (United States. Defense Advanced Research Projects Agency and Semiconductor Research Corporation)National Institutes of Health (U.S.) (Grant K08 DC010419)National Institutes of Health (U.S.) (Grant T32 DC00038)Bertarelli Foundatio

    Regulating the Stem Cell Industry: Needs and Responsibilities

    Get PDF
    Emerging biotechnologies pose public health challenges1 because of both the known and unforeseen risks they carry, the uncertain medical benefits they offer, the speed at which they have disseminated and their unproven mode of application.2 The development of therapies from advances in stem cell science reveals the need to pay critical attention to stem cell treatments. Stem cells have attracted scientific, clinical and public interest because they are self-renewing and have the capacity to develop into specific cell types, depending on the source of stem cells and their biological plasticity. The hope is that stem cells could be used either to replace damaged cells or to create an environment for cellular regeneration to treat several conditions, including osteoarthritis, diabetes, macular degeneration and Parkinson disease. Although promising in theory, so far very few stem cell therapies have proven to be safe and effective in clinical trials. Yet, despite the absence of evidence to support their use, there has been a global proliferation of clinics and associated businesses offering stem cell-based interventions to patients having serious medical conditions.3 These clinics operate mostly in the private health-care sector and typically market their interventions directly to patients over the Internet. The emergence of these clinics has not only created domestic markets in many highincome countries,3 but has also fomented stem cell tourism – the movement of people across international boundaries to access putative stem cell treatments. The global reach of this expanding industry exploits weaknesses and differences in national regulatory infrastructures4 and has revealed the need for an international approach to report and monitor the harms and benefits of these putative treatments

    A Sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications

    Get PDF
    This paper presents the design of a narrowband transmitter and antenna system that achieves an average power consumption of 78 pW when operating at a duty-cycled data rate of 1 bps. Fabricated in a 0.18 μm CMOS process, the transmitter employs a direct-RF power oscillator topology where a loop antenna acts as a both a radiative and resonant element. The low-complexity single-stage architecture, in combination with aggressive power gating techniques and sizing optimizations, limited the standby power of the transmitter to only 39.7 pW at 0.8 V. Supporting both OOK and FSK modulations at 2.4 GHz, the transmitter consumed as low as 38 pJ/bit at an active-mode data rate of 5 Mbps. The loop antenna and integrated diodes were also used as part of a wireless power transfer receiver in order to kick-start the system power supply prior to energy harvesting operation.Semiconductor Research Corporation. Interconnect Focus CenterSemiconductor Research Corporation. C2S2 Focus CenterNational Institutes of Health (U.S.) (Grant K08 DC010419)National Institutes of Health (U.S.) (Grant T32 DC00038)Bertarelli Foundatio

    The technology, opportunities, and challenges of Synthetic Biological Intelligence

    Get PDF
    Integrating neural cultures developed through synthetic biology methods with digital computing has enabled the early development of Synthetic Biological Intelligence (SBI). Recently, key studies have emphasized the advantages of biological neural systems in some information processing tasks. However, neither the technology behind this early development, nor the potential ethical opportunities or challenges, have been explored in detail yet. Here, we review the key aspects that facilitate the development of SBI and explore potential applications. Considering these foreseeable use cases, various ethical implications are proposed. Ultimately, this work aims to provide a robust framework to structure ethical considerations to ensure that SBI technology can be both researched and applied responsibly
    • …
    corecore