1,357 research outputs found

    Thermal conductivity of anisotropic spin - 1/2 two leg ladder:Green's function approach

    Full text link
    We study the thermal transport of a spin-1/2 two leg antiferromagnetic ladder in the direction of legs. The possible effect of spin-orbit coupling and crystalline electric field are investigated in terms of anisotropies in the Heisenberg interactions on both leg and rung couplings. The original spin ladder is mapped to a bosonic model via a bond-operator transformation where an infinite hard-core repulsion is imposed to constrain one boson occupation per site. The Green's function approach is applied to obtain the energy spectrum of quasi-particle excitations responsible for thermal transport. The thermal conductivity is found to be monotonically decreasing with temperature due to increased scattering among triplet excitations at higher temperatures. A tiny dependence of thermal transport on the anisotropy in the leg direction at low temperatures is observed in contrast to the strong one on the anisotropy along the rung direction, due to the direct effect of the triplet density. Our results reach asymptotically the ballistic regime of the spin - 1/2 Heisenberg chain and compare favorably well with exact diagonalization data

    Dynamics in the dimerised and high field incommensurate phase of CuGeO3_3

    Get PDF
    Temperature (2.3<T<402.3<T<40\ K) and magnetic field (0<B<170<B<17\ T) dependent far infrared absorption spectroscopy on the spin-Peierls coumpound CuGeO3_3\ has revealed several new absorption processes in both the dimerised and high field phase of CuGeO3_3. These results are discussed in terms of the modulation of the CuGeO3_3\ structure. At low fields this is the well known spin-Peierls dimerisation. At high fields the data strongly suggests a field dependent incommensurate modulation of the lattice as well as of the spin structure.Comment: 12 pages (revtex), 2 figures (eps), csh selfextracting .uu file, To appear in PRB-Rapid Com

    Origin of the ESR spectrum in the Prussian Blue analogue RbMn[Fe(CN)6]*H2O

    Get PDF
    We present an ESR study at excitation frequencies of 9.4 GHz and 222.4 GHz of powders and single crystals of a Prussian Blue analogue (PBA), RbMn[Fe(CN)6]*H2O in which Fe and Mn undergoes a charge transfer transition between 175 and 300 K. The ESR of PBA powders, also reported by Pregelj et al. (JMMM, 316, E680 (2007)) is assigned to cubic magnetic clusters of Mn2+ ions surrounding Fe(CN)6 vacancies. The clusters are well isolated from the bulk and are superparamagnetic below 50 K. In single crystals various defects with lower symmetry are also observed. Spin-lattice relaxation broadens the bulk ESR beyond observability. This strong spin relaxation is unexpected above the charge transfer transition and is attributed to a mixing of the Mn3+ - Fe2+ state into the prevalent Mn2+ - Fe3+ state.Comment: 5 pages, 4 figures, submitted to PR

    One-magnon Raman scattering in La(2)CuO(4): the origin of the field-induced mode

    Full text link
    We investigate the one-magnon Raman scattering in the layered antiferromagnetic La(2)CuO(4) compound. We find that the Raman signal is composed by two one-magnon peaks: one in the B1g channel, corresponding to the Dzyaloshinskii-Moryia (DM) mode, and another in the B3g channel, corresponding to the XY mode. Furthermore, we show that a peak corresponding to the XY mode can be induced in the planar (RR) geometry when a magnetic field is applied along the easy axis for the sublattice magnetization. The appearance of such field-induced mode (FIM) signals the existence of a new magnetic state above the Neel temperature T_N, where the direction of the weak-ferromagnetic moment (WFM) lies within the CuO(2) planes.Comment: 4 pages, 3 figure

    Dynamics of spin and orbital phase transitions in YVO3

    Get PDF
    YVO3 exhibits a well separated sequence of orbital and spin order transitions at 200 K and 116 K, followed by a combined spin-orbital reorientation at 77 K. It is shown that the spin order can be destroyed by a sufficiently strong optical pulse within less than 4 ps. In contrast, the orbital reordering transition from C-type to G-type orbital order is slower than 100 ps and goes via an intermediate nonthermal phase. We propose that the dynamics of phase transitions is subjected to symmetry relations between the associated phases.Comment: 5 pages, 3 figure

    Coherent amplitudon generation in K_0.3MoO_3 through ultrafast inter-band quasi particle decay

    Get PDF
    The charge density wave system K_0.3MoO_3 has been studied using variable energy pump-probe spectroscopy, ellipsometry, and inelastic light scattering. The observed transient reflectivity response exhibits quite a complex behavior, containing contributions due to quasi particle excitations, coherent amplitudons and phonons, and heating effects. The generation of coherent amplitudons is discussed in terms of relaxation of photo-excited quasi particles, and is found to be resonant with the interband plasmon frequency. Two additional coherent excitations observed in the transients are assigned to zone-folding modes of the charge density wave state

    Photo-induced magnetization enhancement in two-dimensional weakly anisotropic Heisenberg magnets

    Get PDF
    By comparing the photo-induced magnetization dynamics in simple layered systems we show how light-induced modifications of the magnetic anisotropy directly enhance the magnetization. It is observed that the spin precession in (CH3NH3)2CuCl4, initiated by a light pulse, increases in amplitude at the critical temperature TC. The phenomenon is related to the dependence of the critical temperature on the axial magnetic anisotropy. The present results underline the possibility and the importance of the optical modifications of the anisotropy, opening new paths toward the control of the magnetization state for ultrafast memories.Comment: 5 pages, 3 figures, supplementary info as SIr.pd

    Mapping the B,T phase diagram of frustrated metamagnet CuFeO2

    Get PDF
    The magnetic phase diagram of CuFeO2 as a function of applied magnetic field and temperature is thoroughly explored and expanded, both for magnetic fields applied parallel and perpendicular to the material's c-axis. Pulsed field magnetization measurements extend the typical magnetic staircase of CuFeO2 at various temperatures, demonstrating the persistence of the recently discovered high field metamagnetic transition up to Tn2 ~ 11 K in both field configurations. An extension of the previously introduced phenomenological spin model used to describe the high field magnetization process (Phys. Rev. B, 80, 012406 (2009)) is applied to each of the consecutive low-field commensurate spin structures, yielding a semi-quantitative simulation and intuitive description of the entire experimental magnetization process in both relevant field directions with a single set of parameters.Comment: 14 pages, 11 figures, submitted to Phys. Rev.

    Evidence for differentiation in the iron-helicoidal-chain in GdFe3_{3}(BO3_{3})4_{4}

    Get PDF
    We report on a single-crystal X-ray structure study of GdFe3(BO3)4GdFe_{3}(BO_{3})_{4} at room temperature and at T=90 K. At room temperature GdFe3(BO3)4GdFe_{3}(BO_{3})_{4} crystallizes in a trigonal space group R32 (No. 155), the same as found for other members of iron-borate family RFe3(BO3)4RFe_{3}(BO_{3})_{4}. At 90 K the structure of GdFe3(BO3)4GdFe_{3}(BO_{3})_{4} has transformed to the space group P3121P3_{1}2_{1} (No. 152). The low-temperature structure determination gives new insight into the weakly first-order structural phase transition at 156 K and into the related Raman phonon anomalies. The discovery of two inequivalent iron chains in the low temperature structure provide new point of view on the low-temperature magnetic properties.Comment: Subm. to Acta Cryst.
    corecore