47 research outputs found

    Spatially Coupled LDPC Codes Constructed from Protographs

    Full text link
    In this paper, we construct protograph-based spatially coupled low-density parity-check (SC-LDPC) codes by coupling together a series of L disjoint, or uncoupled, LDPC code Tanner graphs into a single coupled chain. By varying L, we obtain a flexible family of code ensembles with varying rates and frame lengths that can share the same encoding and decoding architecture for arbitrary L. We demonstrate that the resulting codes combine the best features of optimized irregular and regular codes in one design: capacity approaching iterative belief propagation (BP) decoding thresholds and linear growth of minimum distance with block length. In particular, we show that, for sufficiently large L, the BP thresholds on both the binary erasure channel (BEC) and the binary-input additive white Gaussian noise channel (AWGNC) saturate to a particular value significantly better than the BP decoding threshold and numerically indistinguishable from the optimal maximum a-posteriori (MAP) decoding threshold of the uncoupled LDPC code. When all variable nodes in the coupled chain have degree greater than two, asymptotically the error probability converges at least doubly exponentially with decoding iterations and we obtain sequences of asymptotically good LDPC codes with fast convergence rates and BP thresholds close to the Shannon limit. Further, the gap to capacity decreases as the density of the graph increases, opening up a new way to construct capacity achieving codes on memoryless binary-input symmetric-output (MBS) channels with low-complexity BP decoding.Comment: Submitted to the IEEE Transactions on Information Theor

    On the Minimum Distance of Generalized Spatially Coupled LDPC Codes

    Get PDF
    Families of generalized spatially-coupled low-density parity-check (GSC-LDPC) code ensembles can be formed by terminating protograph-based generalized LDPC convolutional (GLDPCC) codes. It has previously been shown that ensembles of GSC-LDPC codes constructed from a protograph have better iterative decoding thresholds than their block code counterparts, and that, for large termination lengths, their thresholds coincide with the maximum a-posteriori (MAP) decoding threshold of the underlying generalized LDPC block code ensemble. Here we show that, in addition to their excellent iterative decoding thresholds, ensembles of GSC-LDPC codes are asymptotically good and have large minimum distance growth rates.Comment: Submitted to the IEEE International Symposium on Information Theory 201

    New Codes on Graphs Constructed by Connecting Spatially Coupled Chains

    Full text link
    A novel code construction based on spatially coupled low-density parity-check (SC-LDPC) codes is presented. The proposed code ensembles are described by protographs, comprised of several protograph-based chains characterizing individual SC-LDPC codes. We demonstrate that code ensembles obtained by connecting appropriately chosen SC-LDPC code chains at specific points have improved iterative decoding thresholds compared to those of single SC-LDPC coupled chains. In addition, it is shown that the improved decoding properties of the connected ensembles result in reduced decoding complexity required to achieve a specific bit error probability. The constructed ensembles are also asymptotically good, in the sense that the minimum distance grows linearly with the block length. Finally, we show that the improved asymptotic properties of the connected chain ensembles also translate into improved finite length performance.Comment: Submitted to IEEE Transactions on Information Theor

    Quasi-Cyclic Asymptotically Regular LDPC Codes

    Full text link
    Families of "asymptotically regular" LDPC block code ensembles can be formed by terminating (J,K)-regular protograph-based LDPC convolutional codes. By varying the termination length, we obtain a large selection of LDPC block code ensembles with varying code rates, minimum distance that grows linearly with block length, and capacity approaching iterative decoding thresholds, despite the fact that the terminated ensembles are almost regular. In this paper, we investigate the properties of the quasi-cyclic (QC) members of such an ensemble. We show that an upper bound on the minimum Hamming distance of members of the QC sub-ensemble can be improved by careful choice of the component protographs used in the code construction. Further, we show that the upper bound on the minimum distance can be improved by using arrays of circulants in a graph cover of the protograph.Comment: To be presented at the 2010 IEEE Information Theory Workshop, Dublin, Irelan

    Exact Free Distance and Trapping Set Growth Rates for LDPC Convolutional Codes

    Full text link
    Ensembles of (J,K)-regular low-density parity-check convolutional (LDPCC) codes are known to be asymptotically good, in the sense that the minimum free distance grows linearly with the constraint length. In this paper, we use a protograph-based analysis of terminated LDPCC codes to obtain an upper bound on the free distance growth rate of ensembles of periodically time-varying LDPCC codes. This bound is compared to a lower bound and evaluated numerically. It is found that, for a sufficiently large period, the bounds coincide. This approach is then extended to obtain bounds on the trapping set numbers, which define the size of the smallest, non-empty trapping sets, for these asymptotically good, periodically time-varying LDPCC code ensembles.Comment: To be presented at the 2011 IEEE International Symposium on Information Theor

    Error Propagation Mitigation in Sliding Window Decoding of Braided Convolutional Codes

    Full text link
    We investigate error propagation in sliding window decoding of braided convolutional codes (BCCs). Previous studies of BCCs have focused on iterative decoding thresholds, minimum distance properties, and their bit error rate (BER) performance at small to moderate frame length. Here, we consider a sliding window decoder in the context of large frame length or one that continuously outputs blocks in a streaming fashion. In this case, decoder error propagation, due to the feedback inherent in BCCs, can be a serious problem.In order to mitigate the effects of error propagation, we propose several schemes: a \emph{window extension algorithm} where the decoder window size can be extended adaptively, a resynchronization mechanism where we reset the encoder to the initial state, and a retransmission strategy where erroneously decoded blocks are retransmitted. In addition, we introduce a soft BER stopping rule to reduce computational complexity, and the tradeoff between performance and complexity is examined. Simulation results show that, using the proposed window extension algorithm, resynchronization mechanism, and retransmission strategy, the BER performance of BCCs can be improved by up to four orders of magnitude in the signal-to-noise ratio operating range of interest, and in addition the soft BER stopping rule can be employed to reduce computational complexity.Comment: arXiv admin note: text overlap with arXiv:1801.0323

    On the Block Error Rate Performance of Spatially Coupled LDPC Codes for Streaming Applications

    Get PDF
    In this paper, we study the block error rate (BLER) performance of spatially coupled low-density parity-check (SC- LDPC) codes using a sliding window decoder suited for streaming applications. Previous studies of SC-LDPC have focused on the bit error rate (BER) performance or the frame error rate (FER) performance over the entire length of the code. Here, we consider protograph-based constructions of SC-LDPC codes in which a window decoder continuously outputs blocks in a streaming fashion, and we examine the BLER associated with these blocks.We begin by examining the effect of protograph design on the streaming BLER by varying the block size and the coupling width in such a way that the overall constraint length of the SC-LDPC code remains constant. Next, we investigate the BLER scaling behavior with block size and coupling width. Lastly, we consider the effect of employing an outer code to protect blocks, so that small numbers of residual errors can be corrected by the outer code. Simulation results for the additive white Gaussian noise channel (AWGNC) are included and comparisons are made to LDPC block codes (LDPC-BCs)
    corecore