We investigate error propagation in sliding window decoding of braided
convolutional codes (BCCs). Previous studies of BCCs have focused on iterative
decoding thresholds, minimum distance properties, and their bit error rate
(BER) performance at small to moderate frame length. Here, we consider a
sliding window decoder in the context of large frame length or one that
continuously outputs blocks in a streaming fashion. In this case, decoder error
propagation, due to the feedback inherent in BCCs, can be a serious problem.In
order to mitigate the effects of error propagation, we propose several schemes:
a \emph{window extension algorithm} where the decoder window size can be
extended adaptively, a resynchronization mechanism where we reset the encoder
to the initial state, and a retransmission strategy where erroneously decoded
blocks are retransmitted. In addition, we introduce a soft BER stopping rule to
reduce computational complexity, and the tradeoff between performance and
complexity is examined. Simulation results show that, using the proposed window
extension algorithm, resynchronization mechanism, and retransmission strategy,
the BER performance of BCCs can be improved by up to four orders of magnitude
in the signal-to-noise ratio operating range of interest, and in addition the
soft BER stopping rule can be employed to reduce computational complexity.Comment: arXiv admin note: text overlap with arXiv:1801.0323