32 research outputs found

    Characterization of the binding sites of the anticancer ruthenium(III) complexes KP1019 and KP1339 on human serum albumin via competition studies

    Get PDF
    Indazolium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (KP1019) and its Na+ analogue (KP1339) are two of the most prominent non-platinum antitumor metal complexes currently undergoing clinical trials. After intravenous administration, they are known to bind to human serum albumin (HSA) in a noncovalent manner. To elucidate their HSA binding sites, displacement reactions with the established site markers warfarin and dansylglycine as well as bilirubin were monitored by spectrofluorimetry, ultrafiltration-UV-vis spectrophotometry, and/or capillary zone electrophoresis. Conditional stability constants for the binding of KP1019 and KP1339 to sites I and II of HSA were determined, indicating that both Ru(III) compounds bind to both sites with moderately strong affinity (log K (1)' = 5.3-5.8). No preference for either binding site was found, and similar results were obtained for both metal complexes, demonstrating low influence of the counter ion on the binding event

    Syntheses and characterization of vitamin B12-Pt(II) conjugates and their adenosylation in an enzymatic assay

    Full text link
    Aiming at the use of vitamin B12 as a drug delivery carrier for cytotoxic agents, we have reacted vitamin B12 with trans-[PtCl(NH3)2(H2O)]+, [PtCl3(NH3)](-) and [PtCl4](2-). These Pt(II) precursors coordinated directly to the Co(III)-bound cyanide, giving the conjugates [(Co)-CN-(trans-PtCl(NH3)2)]+ (5), [(Co)-CN-(trans-PtCl2(NH3))] (6), [(Co)-CN-(cis-PtCl2(NH3))] (7) and [(Co)-CN-(PtCl3)](-) (8) in good yields. Spectroscopic analyses for all compounds and X-ray structure elucidation for 5 and 7 confirmed their authenticity and the presence of the central "Co-CN-Pt" motif. Applicability of these heterodinuclear conjugates depends primarily on serum stability. Whereas 6 and 8 transmetallated rapidly to bovine serum albumin proteins, compounds 5 and 7 were reasonably stable. Around 20% of cyanocobalamin could be detected after 48 h, while the remaining 80% was still the respective vitamin B12 conjugates. Release of the platinum complexes from vitamin B12 is driven by intracellular reduction of Co(III) to Co(II) to Co(I) and subsequent adenosylation by the adenosyltransferase CobA. Despite bearing a rather large metal complex on the beta-axial position, the cobamides in 5 and 7 are recognized by the corrinoid adenosyltransferase enzyme that catalyzes the formation of the organometallic C-Co bond present in adenosylcobalamin after release of the Pt(II) complexes. Thus, vitamin B12 can potentially be used for delivering metal-containing compounds into cells
    corecore