3,482 research outputs found

    Glassy Dynamics in a Frustrated Spin System: Role of Defects

    Full text link
    In an effort to understand the glass transition, the kinetics of a spin model with frustration but no quenched randomness has been analyzed. The phenomenology of the spin model is remarkably similiar to that of structural glasses. Analysis of the model suggests that defects play a major role in dictating the dynamics as the glass transition is approached.Comment: 9 pages, 5 figures, accepted in J. Phys.: Condensed Matter, proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics

    GSI: GPU-friendly Subgraph Isomorphism

    Full text link
    Subgraph isomorphism is a well-known NP-hard problem that is widely used in many applications, such as social network analysis and query over the knowledge graph. Due to the inherent hardness, its performance is often a bottleneck in various real-world applications. Therefore, we address this by designing an efficient subgraph isomorphism algorithm leveraging features of GPU architecture, such as massive parallelism and memory hierarchy. Existing GPU-based solutions adopt a two-step output scheme, performing the same join process twice in order to write intermediate results concurrently. They also lack GPU architecture-aware optimizations that allow scaling to large graphs. In this paper, we propose a GPU-friendly subgraph isomorphism algorithm, GSI. Different from existing edge join-based GPU solutions, we propose a Prealloc-Combine strategy based on the vertex-oriented framework, which avoids joining-twice in existing solutions. Also, a GPU-friendly data structure (called PCSR) is proposed to represent an edge-labeled graph. Extensive experiments on both synthetic and real graphs show that GSI outperforms the state-of-the-art algorithms by up to several orders of magnitude and has good scalability with graph size scaling to hundreds of millions of edges.Comment: 15 pages, 17 figures, conferenc

    Polymers for fluorescence imaging of formaldehyde in living systems via the Hantzsch reaction

    Get PDF
    Formaldehyde (FA) has been detected via the Hantzsch reaction for many decades. However, the Hantzsch reaction has been rarely used to detect FA in biological systems due to the disadvantages of small-molecule probes (including toxicity and poor water solubility). In this study, polymeric fluorescent probes were developed to resolve these issues associated with small molecules, and FA in living systems was successfully detected via the Hantzsch reaction. These water-soluble polymers were easily scaled-up (∼25 g) by radical polymerization using commercial monomers. These polymers exhibited similar, albeit better, sensitivity to FA compared to water-soluble small molecules, primarily indicative of the advantages of polymers for the detection of FA via the Hantzsch reaction. The polymer structures were highly biocompatible with the probes; thus, these polymers can effectively detect endogenous FA in cells or zebrafish in a safe manner. This result confirmed the superiority of polymers in safety as biocompatible materials. This study highlights a straightforward method for exploring probes for the detection of FA in living systems. It offers functional polymers for bioimaging and extends the application scope of the Hantzsch reaction, reflecting the utility of a broad study of organic reactions in interdisciplinary fields as well as possible key implications in organic chemistry, analytical chemistry, and polymer chemistry

    Effective Field Theory of the Zero-Temperature Triangular-Lattice Antiferromagnet: A Monte Carlo Study

    Full text link
    Using a Monte Carlo coarse-graining technique introduced by Binder et al., we have explicitly constructed the continuum field theory for the zero-temperature triangular Ising antiferromagnet. We verify the conjecture that this is a gaussian theory of the height variable in the interface representation of the spin model. We also measure the height-height correlation function and deduce the stiffness constant. In addition, we investigate the nature of defect-defect interactions at finite temperatures, and find that the two-dimensional Coulomb gas scenario applies at low temperatures.Comment: 26 pages, 9 figure

    Suspension and Measurement of Graphene and Bi2Se3 Atomic Membranes

    Full text link
    Coupling high quality, suspended atomic membranes to specialized electrodes enables investigation of many novel phenomena, such as spin or Cooper pair transport in these two dimensional systems. However, many electrode materials are not stable in acids that are used to dissolve underlying substrates. Here we present a versatile and powerful multi-level lithographical technique to suspend atomic membranes, which can be applied to the vast majority of substrate, membrane and electrode materials. Using this technique, we fabricated suspended graphene devices with Al electrodes and mobility of 5500 cm^2/Vs. We also demonstrate, for the first time, fabrication and measurement of a free-standing thin Bi2Se3 membrane, which has low contact resistance to electrodes and a mobility of >~500 cm^2/Vs

    The production of the new gauge boson BHB_{H} via e−γe^{-}\gamma collision in the littlest Higgs model

    Full text link
    The new lightest gauge boson BHB_H with mass of a few hundred GeV is predicted in the littlest Higgs model. BHB_H should be accessible in the planed ILC and the observation of such particle can strongly support the littlest Higgs model. The realization of γγ\gamma\gamma and eγe\gamma collision will open a wider window to probe BHB_H. In this paper, we study the new gauge boson BHB_{H} production processes e−γ→e−γBHe^{-}\gamma\to e^{-}\gamma B_{H} and e−γ→e−ZBHe^{-}\gamma\to e^{-}Z B_{H} at the ILC. Our results show that the production cross section of the process e−γ→e−ZBHe^{-}\gamma\to e^{-}Z B_{H} is less than one fb in the most parameter spaces while the production cross section of the process e−γ→e−γBHe^{-}\gamma\to e^{-}\gamma B_{H} can reach the level of tens fb and even hundreds of fb in the sizable parameter spaces allowed by the electroweak precision data. With the high luminosity, the sufficient typical signals could be produced, specially via e−γ→e−γBHe^{-}\gamma\to e^{-}\gamma B_{H}. Because the final electron and photon beams can be easily identified and the signal can be easily distinguished from the background produced by ZZ and HH decaying, BHB_H should be detectable via eγe\gamma collision at the ILC. Therefore, the processes e−γ→e−γBHe^{-}\gamma\to e^{-}\gamma B_{H} and e−γ→e−ZBHe^{-}\gamma\to e^{-}Z B_{H} provide a useful way to detect BHB_{H} and test the littlest Higgs model.Comment: 15 pages, 3 figures. Some typos have been corrected, we have added some new references, and there are also some changes in equation 1

    Probing the lightest new gauge boson BHB_H in the littlest Higgs model via the processes γγ→ffˉBH\gamma\gamma \to f\bar{f}B_H at the ILC

    Full text link
    The neutral gauge boson BHB_H with the mass of hundreds GeV, is the lightest particle predicted by the littlest Higgs(LH) model, and such particle should be the first signal of the LH model at the planed ILC if it exists indeed. In this paper, we study some processes of the BHB_H production associated with the fermion pair at the ILC, i.e., γγ→ffˉBH\gamma\gamma\to f\bar{f}B_{H}. The studies show that the most promising processes to detect BHB_H among γγ→ffˉBH\gamma\gamma\to f\bar{f}B_{H} are γγ→l′+l′−BH(l′=e,μ)\gamma\gamma\to l'^+l'^-B_{H}(l'=e,\mu), and they can produce the sufficient signals in most parameter space preferred by the electroweak precision data at the ILC. On the other hand, the signal produced via the certain BHB_H decay modes is typical and such signal can be easily identified from the SM background. Therefore, BHB_H, the lightest gauge boson in the LH model would be detectable at the photon collider realized at the ILC.Comment: 12 pages, 4 figure

    Advances in bioorganic molecules inspired degradation and surface modifications on Mg and its alloys

    Get PDF
    Mg alloys possess biodegradability, suitable mechanical properties, and biocompatibility, which make them possible to be used as biodegradable implants. However, the uncontrollable degradation of Mg alloys limits their general applications. In addition to the factors from the metallic materials themselves, like alloy compositions, heat treatment process and microstructure, some external factors, relating to the test/service environment, also affect the degradation rate of Mg alloys, such as inorganic salts, bioorganic small molecules, bioorganic macromolecules. The influence of bioorganic molecules on Mg corrosion and its protection has attracted more and more attentions. In this work, the cutting-edge advances in the influence of bioorganic molecules (i.e., protein, glucose, amino acids, vitamins and polypeptide) and their coupling effect on Mg degradation and the formation of protection coatings were reviewed. The research orientations of biomedical Mg alloys in exploring degradation mechanisms in vitro were proposed, and the impact of bioorganic molecules on the protective approaches were also explored
    • …
    corecore