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ABSTRACT: Formaldehyde (FA) has been detected via the Hantzsch reaction for many decades. However, the Hantzsch reaction 

has been rarely used to detect FA in biological systems due to the disadvantages of small-molecule probes (including toxicity and 

poor water solubility). In this study, polymeric fluorescent probes were developed to resolve these issues associated with small mol-

ecules, and FA in living systems was successfully detected via the Hantzsch reaction. These water-soluble polymers were easily 

scaled-up (~25 g) by radical polymerization using commercial monomers. These polymers exhibited similar, albeit better, sensitivity 

to FA compared to water-soluble small molecules, primarily indicative of the advantages of polymers for the detection of FA via the 

Hantzsch reaction. The polymer structures were highly biocompatible with the probes; thus, these polymers can effectively detect 

endogenous FA in cells or zebrafish in a safe manner. This result confirmed the superiority of polymers in safety as biomaterials. 

This study highlights a straightforward method for exploring new probes for the detection of FA in living systems. To the best of our 

knowledge, this is the first study reporting the detection of FA in biological systems via the Hantzsch reaction. It offers new functional 

polymers for bioimaging and extends the application scope of the Hantzsch reaction, reflecting the utility of a broad study of organic 

reactions in interdisciplinary fields as well as possible key implications in organic chemistry, analytical chemistry, and polymer 

chemistry.                        

INTRODUCTION 

Formaldehyde (FA) is a well-known environmental pollu-

tant and human toxin. FA cross-links DNA or proteins, and high 

FA concentrations can lead to stomach ache, emesis, heart dis-

orders, renal injury, and even death.1-5 Conversely, FA is en-

dogenously generated in the human body as an essential metab-

olite in several biochemical processes (including the epigenetic 

N-demethylation of DNA and/or RNA; small molecular metab-

olism; the action of the neutrophil enzyme myeloperoxidase; 

and oxidase enzymes).6-11 The concentrations of FA in human 

body are controlled at stable levels (50–100 μM in blood and 

200–500 μM in cells) via compensatory FA metabolism by FA 

dehydrogenase. Higher FA concentrations are considered to be 

related to Alzheimer's disease; cancer; deformed embryo, and 

respiratory disorders.4, 9, 12-15 Therefore, it is important to detect 

FA in biological systems to investigate and monitor diseases in 

terms of fundamental studies and practical applications.    

Conventionally, FA can be detected by high-performance 

liquid chromatography, mass spectrometry, gas chromatog-

raphy, and preconcentration or chemical ionization,16-21 all of 

which exhibit high sensitivity and selectivity; nevertheless, 

these methods are not suitable for detecting FA in living organ-

isms due to the inevitable destruction of specimens and tedious 

sample preparation procedures. Meanwhile, fluorescent probes 

constitute a straightforward method for the nondestructive ex-

amination of FA in living systems. In 2015, Chang and cowork-

ers were the first to design a fluorescent probe via an FA-

induced 2-aza-Cope reaction, which was used to successfully 

detect exogenous or endogenous FA in cells.22-23 Chang and Lin 

have developed several sensitive fluorescent FA probes via the 

2-aza-Cope rearrangement or hydrazine-aldehyde condensation 

reactions.24-27 These studies have opened new avenues for the 

detection of FA in living organisms in a facile manner and have 

triggered the development of a series of small-molecule probes 

for FA detection.14, 28-31       

Inspired by such pioneering studies, a polymeric fluorescent 

probe for detecting FA in living systems via the Hantzsch reac-

tion is reported for the first time (Scheme 1). The Hantzsch re-

action, as introduced by Hantzsch in 1881,32 involves the one-

pot condensation of an aldehyde, two β-diketone or β-ketone 

ester derivatives, and ammonia, efficiently yielding 1,4-dihy-

dropyridine (1,4-DHP) with native fluorescence (Scheme 1a). 

Several 1,4-DHP derivatives have been developed via the 

Hantzsch reaction for the treatment of hypertension and other 

cardiovascular diseases.33-36 Notably, the Hantzsch reaction has 

also been used for FA detection because of its rapid reaction 

rate and native fluorescence of 1,4-DHP. In 1953, Nash re-

ported the first colorimetric estimation of FA via the Hantzsch 

reaction.37 Thus far, several approaches including commercial 

FA assay kits have been successfully developed on the basis of 

the Hantzsch reaction to detect FA in the environment, food, 



 

and medicine.38-40 Nevertheless, the Hantzsch reaction has been 

rarely used to detect FA in living organisms to the best of our 

knowledge, possibly related to the clear toxicity or poor water 

solubility of small-molecule β-diketone or β-ketone ester deriv-

atives.   

Scheme 1. a) The Hantzsch reaction, and b) A polymer for 

the detection of FA in living systems via the Hantzsch reac-

tion. 

 

In this study, polymeric probes were developed to overcome 

the inherent limitations of small molecules. In this regard, wa-

ter-soluble copolymers containing β-ketone ester moieties were 

easily prepared by radical polymerization. These copolymers 

exhibited similar, albeit better, sensitivity compared to small 

molecules (such as acetylacetone (Hacac) and ethyl acetoace-

tate (Eaa)) to detect FA via the Hantzsch reaction; these poly-

mers also exhibited excellent cellular safety. A biocompatible 

polymer was used to successfully detect endogenous FA in liv-

ing systems (including cells and zebrafish, Scheme 1b). This 

study highlights the utility of combining polymer chemistry and 

organic reactions to explore new biomaterials for practical ap-

plications. 

RESULTS AND DISCUSSION 

Comparison of Polymers to Small Molecules for the De-

tection of FA  

β-Ketone-ester-containing polymers were prepared using 

commercially available monomers by convenient conventional 

radical polymerization. As a typical example, two commercial 

monomers, i.e., 2-(acetoacetoxy) ethyl methacrylate (AEMA) 

and poly(ethylene glycol methyl ether) methacrylate (PEGMA, 

Mn: ~ 950 g mol−1), respectively, were copolymerized by radical 

polymerization. The AEMA:PEGMA molar ratio was set to be 

1:1. 2,2′-Azobis(2,4-dimethylvaleronitrile) (ABVN, 2 mol% to 

monomers) and DMF were used as the initiator and solvent, re-

spectively. First, a Schlenk tube was charged with the mono-

mers, initiator, and solvent, followed by purging the tube with 

nitrogen for 30 min to remove oxygen and maintaining the tube 

in a 70°C oil bath. After 12 h, polymerization was quenched in 

an ice-water bath, and the samples were subjected to 1H NMR 

and gel permeation chromatography (GPC) analyses. The final 

copolymer was obtained afterprecipitation in diethyl ether, re-

ferred to as P1. Monomers were nearly completely polymerized 

(~99%), yielding P1, ~28 g (Figure 1a) with a satisfactory mo-

lecular weight (Mn(GPC): ~149000 g mol−1, Table S1, Figure 

1a). The 1H NMR spectrum of P1 (Figure 1a) revealed clear 

peaks at ~3.33 ppm, corresponding to the specific methyl 

groups in PEG segments, and at ~2.25 ppm, corresponding to 

β-ketone ester. An integral ratio (I3.33/I2.25) of 1.01 was con-

sistent with the theoretical value (1:1), indicative of the success-

ful preparation of the target poly(β-ketone ester)-co-

poly(PEGMA). In addition, another polymer (P2) was prepared 

using a different AEMA/PEGMA feed ratio (1/2) by a similar 

procedure (Table S1, Figure S1).  

The resulting copolymers were used for the qualitative de-

tection of FA via the Hantzsch reaction (Figure 1b). In a 96-

well plate, a PBS solution (pH = 7.4) of P1 (10 mg/mL, β-ke-

tone ester: 8.6 mM) and ammonium acetate (1.0 mg/mL) was 

incubated with FA (5 mM) for 5 min (20°C), followed by sub-

jecting the plate for UV observation. P2 (10 mg/mL, β-ketone 

ester: 4.7 mM) was analyzed in a similar manner. Small mole-

cules including 8.6 mM of Hacac and 8.6 mM of Eaa were used 

as the controls, and PBS served as the blank.      

 

Figure 1. a) 1H NMR spectrum (400 MHz, CDCl3) of P1. b) Optical images of 

copolymers (10 mg/mL; β-ketone ester: P1 (8.6 mM), P2 (4.7 mM)) and small 

molecules (Hacac: 8.6 mM, Eaa: 8.6 mM) for reaction with FA (5 mM) in the 

presence of ammonium acetate (1.0 mg/mL), 20°C. PBS (pH 7.4) was used 

as the solvent and blank. c) Fluorescence spectra of the 5-min treatment of P1 

(10 mg/mL, β-ketone ester: 8.6 mM) and ammonium acetate (1.0 mg/mL) with 

FA (0–50 mM) in PBS (pH 7.4), 20°C. d) Fluorescence spectra of 30-min treat-

ment of P1 (10 mg/mL, β-ketone ester: 8.6 mM) and ammonium acetate (1.0 

mg/mL) with FA (0–5 mM) in PBS (pH 7.4), 20°C. 

None of the solutions exhibited fluorescence prior to the ad-

dition of FA (Figure 1b, left). However, after 5-min incubation 

with FA, P1 and P2 solutions exhibited strong fluorescence. P1 

exhibited a more intense fluorescence than P2, related to the 

presence of higher amounts of β-ketone ester in the P1 structure. 

In contrast, the Hacac and Eaa solutions did not exhibit any flu-

orescence (Figure 1b, middle). After 30 min, the small molecule 

solutions also exhibited visible, albeit weak, fluorescence, 

while the fluorescence strength of the polymer solutions in-

creased. This suggested the more rapid turn-on response of pol-



 

ymers compared to small molecules, possibly related to the ac-

celeration of the concentration-dependent Hantzsch reaction by 

higher concentrations of β-ketone ester in the polymer struc-

tures. Subsequently, the mixtures in the plate were extracted by 

CDCl3 for 1H NMR analysis, and 1,4-DHP was identified, in-

dicative of the facile Hantzsch reaction in the microplate (Fig-

ure S2).  

In addition, the absorption profiles of polymers and small 

molecules were examined. Intense fluorescence peaks (~460 

nm) were observed after the 5-min incubation of FA (0–50 mM) 

in a solution of P1 (10 mg/mL, β-ketone ester: 8.6 mM) and 

ammonium acetate (1.0 mg/mL) (20°C), with a 254-fold fluo-

rescence enhancement (Figure 1c). After incubation with 5 mM 

of FA for 30 min, a 293-fold fluorescence increase was recorded 

(Figure 1d). Similar results were obtained for the P2 solution (5 

min: 91-fold fluorescence enhancement, 30 min: 110-fold fluo-

rescence enhancement; ~460 nm, Figure S3a and 3a’, respec-

tively). However, Hacac only exhibited 37-fold and 69-fold flu-

orescence enhancement (~510 nm) in the 5- and 30-min tests 

(Figure S3b and 3b’, respectively). Eaa exhibited 21-fold and 

101-fold fluorescence enhancement in the 5- and 30-min tests 

(Figure S3c and 3c’, respectively). The calculated reaction rate 

constants of probes (Figure S4) followed the order of P1 (0.072 

min−1) > P2 (0.069 min−1) > Hacac (0.064 min−1) > Eaa (0.040 

min−1). This result confirmed that polymers are more rapid turn-

on probes compared to small molecules for FA detection. 

Meanwhile, the calculated FA detection thresholds for P1, P2, 

Hacac, and Eaa were 3.1 × 10−7 M, 3.4 × 10−7 M, 1.8 × 10−6 M, 

and 1.2 × 10−6 M, respectively, on the basis of titration results 

(Figure S5). This result suggested that polymers are more sen-

sitive than small molecules for the detection of FA.  

Furthermore, P1, P2, Hacac, and Eaa exhibited higher se-

lectivity (5-min and 30-min tests) for FA compared to other bi-

ological species. The fluorescence intensities of polymers were 

greater than 10 times those of small molecules (Figures 2 and 

S6). Thus, these copolymers can serve as better probes than 

small molecules for the detection of FA via the Hantzsch reac-

tion.      

 

Figure 2. Selectivity study of polymers (10 mg/mL) and small molecules (8.6 

mM) to FA (5 mM) and other biological species (5 mM) in the presence of 

ammonium acetate (1.0 mg/mL), 20°C, 30 min. a) Photos of probes with FA 

and other species, PBS (pH 7.4), λex = 360 nm. b) Fluorescent intensities of 

P1 (10 mg/mL) and ammonium acetate (1 mg/mL) to FA (5 mM) and other 

biological species (5 mM) (p < 0.01 between FA and other species). Data are 

represented as mean ± standard deviation (SD). 

Cytotoxicity Study of Small Molecules and Polymers 

Fluorescent probes should always be biocompatible for use 

in biological systems. Thus, the cytotoxicity of P1, P2, Hacac, 

and Eaa was evaluated using a cell-counting kit-8 (CCK-8) as-

say. The murine fibroblast cell line L929 was used as the model 

cell, where cell viability in the medium only was defined as 100% 

viability.   

 

Figure 3. Cytotoxicity of a) small molecules (Hacac and Eaa) and b) polymers 

to L929 cells, 24-h culture. Results are represented as mean ± standard devi-

ation (SD).   

Hacac exhibited clear cytotoxicity, i.e., ~64% and ~47% vi-

ability at 0.1 mg/mL and 0.2 mg/mL, respectively (Figure 3a, p 

< 0.01, contrast with cells in medium only). The half-maximal 

inhibitory concentration (IC50) value of Hacac was calculated 

to be 0.16 mg/mL by SPSS 15.0. Eaa exhibited moderate cyto-

toxicity to L929 cells (Figure 3a), and the calculated IC50 value 

of Eaa was 0.95 mg/mL. On the contrary, cells retained nearly 

100% viability even in 30 mg/mL of P1 (β-ketone ester: 5.5 

mg/mL) or P2 (β-ketone ester: 3.0 mg/mL) (Figure 3b). This 

result suggested the unique advantage of polymers to serve as 

safe biomaterials even with the inclusion of some toxic groups 

in the polymer structure.     

Detection of Exogenous FA in Cells 

Polymers and small molecules were used to detect the ex-

cess added FA in L929 cells. Typically, cells (~105/mL) were 

incubated in a culture medium containing P1 (30 mg/mL) and 

ammonium acetate (1 mg/mL) for 1 h, followed by washing 

thrice with PBS (pH = 7.4) and incubating in a culture medium 

containing FA (100 μM) for 30 min prior to observation. Cells 

without probes served as the blank.  

In the presence of FA, cells exhibited fluorescence by using 

P1, indicative of the smooth Hantzsch reaction (Figure 4b). By 

using P2 (30 mg/mL), cells also exhibited clear, albeit weaker, 

fluorescence (Figure 4c). No fluorescence and extremely weak 

fluorescence were recorded with 0.1 and 0.5 mg/mL of small 

molecules, respectively (Figure S7). Visible fluorescence was 

only observed with higher concentration (1 mg/mL) of Hacac 

or Eaa (Figure 4d and 4e). These visible results are in good 

agreement with the quantitative fluorescence intensity data 

(Figure S8a) and flow cytometric analysis (Figure S8b), sug-

gesting that the Hantzsch reaction is a simple, practical tool for 

tracing the additional FA in living cells.   

In addition, the fluorescein diacetate (FDA)/propidium io-

dide (PI) assay41 was employed to simultaneously observe liv-

ing or dead cells after FA detection. Cells exhibited nearly 100% 

viability in the presence of polymers (Figures 4b, 4c, and S9). 

Few cells survived 1.0 mg/mL of Hacac (Figures 4d and S9), 

and remarkable apoptosis was observed in the presence of 1.0 

mg/mL of Eaa (Figures 4e and S9). These results are consistent 

with those obtained from quantitative CCK-8 analyses (Figure 

S10), indicative of the superiority of polymers to detect FA in a 



 

safe manner, thereby ensuring the accuracy of the detection re-

sults. 

 

Figure 4. Exogenous detection of FA in L929 cells. a) Blank (without probes); 

b) P1; c) P2; d) Hacac; and e) Eaa. Cells were incubated with or without probes 

in the presence of ammonium acetate (1.0 mg/mL) for 1 h, followed by incu-

bation with FA (100 μM) for 30 min. Bar = 100 μm.   

Moreover, the subcellular distribution of polymers (e.g., P1) 

was studied via the reported methods.22-24 L929 cells (~105/mL) 

were incubated with P1 (30 mg/mL), ammonium acetate (1 

mg/mL), and an indicator for 1 h, followed by culturing with 

FA (100 μM) for 30 min. Four indicators were analyzed in par-

allel (i.e., LysoTracker Red, ER-Tracker Red, Golgi-Tracker 

Red, and MitoTracker Green, respectively). Co-localization 

data suggested that the Hantzsch reaction mainly occurs in the 

endoplasmic reticulum and Golgi apparatus (Figure S11). This 

result is different from that reported previously,22-24 possibly re-

lated to different endocytosis and cellular metabolism between 

polymers and small molecules.    

These results confirmed that the obtained polymers are bio-

compatible probes for the detection of FA. Thus, P1 is selected 

for the detection of endogenous FA in living cells; it exhibits 

excellent safety and FA detection ability. 

Detection of Methanol-Induced Endogenous FA in Cells 

Methanol was used to induce endogenous FA in cells. Na-

HSO3 has been reported to be an FA inhibitor.24, 27 L929 cells 

(~105/mL) were incubated in a culture medium containing 

methanol (5 vol%), P1 (30 mg/mL), and ammonium acetate (1 

mg/mL) for 1 h prior to observation. Cells in methanol (5 vol%), 

P1 (30 mg/mL), ammonium acetate (1 mg/mL), and NaHSO3 (1 

mg/mL) were examined as the control. Cells in the culture me-

dium containing P1 (30 mg/mL) and ammonium acetate (1 

mg/mL) served as the blank.  

Cells exhibited clear fluorescence (Figure 5b), while the 

blank and control did not exhibit fluorescence (Figure 5a and 

5c). The direct observation results agreed with the quantitative 

data obtained by flow cytometric analysis (Figure 5d), confirm-

ing that FA in cells as a metabolite of methanol is effectively 

detected by P1 or inhibited by NaHSO3. Meanwhile, cells re-

tained ~100% viability after the experiments (Figures 5 and 

S12a: FDA/PI assay; Figure S12b: CCK-8 assay), suggesting 

that P1 is a valid, safe probe to detect endogenous FA in living 

cells.   

 

Figure 5. Detection of methanol-induced endogenous FA in L929 cells. a) P1; 

b) P1 + methanol; c) P1 + methanol + NaHSO3. Cells were incubated in the 

presence of ammonium acetate (1 mg/mL), 1 h, bar = 100 μm; d) flow cytom-

etry analysis of fluorescent cells. Cascade Blue-A channel: excitation wave-

length-405 nm. 

Detection of Methanol-Induced Endogenous FA in 

Zebrafish 

Moreover, P1 was used to detect endogenous FA in 

zebrafish. Six zebrafish larvae (~15 days old) were cultured in 

water (~20 mL) containing methanol (5 vol%), P1 (30 mg/mL), 

and ammonium acetate (1 mg/mL) for 2 h. Then, the larvae 

were paralyzed in a tricaine solution (4 μg/mL, ~10 min) prior 

to observation. Larvae cultured under different conditions were 



 

tested as controls in a similar manner. These conditions were as 

follows: methanol (5 vol%); P1 (30 mg/mL) + ammonium ace-

tate (1 mg/mL); and methanol (5 vol%) + NaHSO3 (1 mg/mL) 

+ P1 (30 mg/mL) + ammonium acetate (1 mg/mL). Larvae in 

water only served as the blank.  

A fluorescence signal was observed for the internal parts of 

the blank larvae (Figure 6a1). When the larvae were incubated 

with methanol, almost the same images as the blank were ob-

served (Figure 6a2). After incubation with P1, significant fluo-

rescence enhancement was not observed (Figure 6a3). Quanti-

tative data indicated a slight increase in the fluorescent strength 

and area of larvae (Figure 6b, p < 0.05, contrast to the blank), 

corresponding to the marginal amount of intrinsic FA in the lar-

vae. However, in the presence of methanol and P1, the head and 

tail of larvae exhibited clear fluorescence (Figure 6a4). Further 

3D images obtained from a light sheet fluorescent microscopy 

revealed that the head, back, and backbone of the zebrafish lar-

vae in methanol and P1 exhibit stronger fluorescence compared 

with those under other conditions (Figures 6a4’ and S13). 

Hence, the fluorescence intensity and area of larvae incubated 

in methanol and P1 significantly increase (Figure 6b, p < 0.01, 

contrast to the blank). This result confirmed that the use of 

methanol is effective for inducing endogenous FA in zebrafish 

larvae, and P1 is suitable for detecting FA in living systems. 

With the addition of NaHSO3, larvae exhibited a remarkably 

decreased fluorescence signal (Figures 6a5, 6b, and S13), con-

firming that NaHSO3 is a simple, albeit efficient, FA inhibitor 

to remove FA in living systems.       

Possible Extensions and Challenges 

With the assistance of polymers, the detection of endoge-

nous FA in living systems was initially realized by the Hantzsch 

reaction; however, current research still has room for improve-

ment. 

The polymers in this study were only suitable for the detec-

tion of FA in cells or transparent small animals because of the 

blue fluorescent Hantzsch product. To use the polymeric probes 

in other animals or possibly clinical trials, it is crucial to exploit 

polymers containing new β-ketone ester or β-diketone groups 

that can react with FA, affording 1,4-DHPs with red or near-IR 

emission wavelengths.  

Extremely simple polymers (i.e., random copolymer struc-

ture and broad polydispersity indices (PDIs)) were used; how-

ever, a biocompatible polymeric probe was developed to suc-

cessfully detect endogenous FA in living systems. This result 

suggested that the combination of polymer chemistry and or-

ganic reactions is feasible to explore new functional polymers 

for bio-applications. Currently, well-defined polymers (con-

trolled molecular weights, narrow PDIs, tunable sequences, and 

complex topological structures) can be rapidly prepared by 

modern controlled radical polymerization (CRP) such as single 

electron transfer-atom transfer radical polymerization (SET-

ATRP), sulfur-free reversible addition–fragmentation chain 

transfer (RAFT) emulsion polymerization, photoinduced ATRP, 

and electron/energy transfer-RAFT (PET-RAFT).42-55 Recent 

studies have reported that polymer structures (i.e., sequences 

and topology structures) remarkably affect the properties or 

functions of polymers.53, 56-60 Thus, the future combination of 

these modern CRP techniques with the method used herein 

might offer new polymeric probes for the more rapid, more pre-

cise detection of FA in biological systems. 

CONCLUSIONS 

In summary, polymeric probes have been prepared for the 

successful detection of endogenous FA in living systems via the 

Hantzsch reaction. Large amounts of polymers were easily pre-

pared, which avoided laborious multi-step syntheses of other 

probes. The polymer structures led to the improved reactivity 

and safety of the functional groups; thus, these polymers are 

 

Figure 6. Images of zebrafish in a1) water (blank); a2) methanol (5 vol%); a3) P1 (30 mg/mL) + ammonium acetate (1 mg/mL); a4, a4’) P1 (30 mg/mL) + 

ammonium acetate (1 mg/mL) + methanol (5 vol%); a5) P1 (30 mg/mL) + ammonium acetate (1 mg/mL) + methanol (5 vol%) + NaHSO3 (1 mg/mL). b) Fluores-

cent intensity ratio and fluorescent area ratio of fish in different groups, ratios in the blank were defined as 1. Data are represented as mean ± standard deviation 

(SD). 



 

considerably better probes than small molecules for the detec-

tion of FA in living systems. This study highlights the combi-

nation of polymer chemistry and organic reactions to achieve 

new functional polymers with useful properties. 

Currently, polymers have been considered to bridge labora-

tory organic reactions and real applications, and several organic 

reactions are playing new roles in polymer chemistry to achieve 

promising materials. Examples include click and click-inspired 

reactions and multicomponent reactions.61-74 Thus, this first pol-

ymeric probe for the detection of FA in biological systems via 

the Hantzsch reaction might prompt a broad, in-depth study of 

organic reactions in polymer science for discovering several 

new functional polymers with interesting properties for appli-

cations in biological and medical areas.  

EXPERIMENTAL SECTION 

Preparation of Copolymers 

β-Ketone-ester-containing copolymers (P1, P2) were easily 

prepared using commercially available monomers by conven-

ient radical polymerization. Typically, AEMA (5.4 g, 25 mmol), 

PEGMA (23.8 g, 25 mmol) and ABVN (248 mg, 1 mmol) were 

charged into a Schlenk tube with 30 mL of DMF. The Schlenk 

tube was sealed with a rubber septum and purged by nitrogen 

flow for 20 min, then kept in a 70°C oil bath for 12 h. The 

polymerization was quenched in an ice-water bath. Samples 

(~20-50 μL) were taken for 1H NMR and GPC analyses. The 

polymer (P1) was purified by precipitation in diethyl ether three 

times and then dried under vacuum to a white powder (28.4 g, 

~97%).  

P2 was prepared using a different AEMA/PEGMA feed ra-

tio (1/2) by a similar procedure. 

Cell Culture 

L929 cells (a fibroblast cell line from mice) were cultured 

at 37°C and 5% CO2 in a Roswell Park Memorial Institute-1640 

(RPMI-1640) medium with fetal bovine serum (FBS, 10%) and 

1% penicillin and streptomycin. Culture medium was changed 

every other day to maintain the exponential growth of the cells. 

Experimental animals 

All the experimental procedures involving zebrafish were 

approved by the Animal Care and Use Committee of Tsinghua 

University. Tuebingen zebrafish (~7 days old) were raised in an 

aquaculture system (25°C, 12 h/12 h (light/dark) cycle) and fed 

with newly paramecium three times daily at 9:00, 15:00, and 

21:00. The zebrafish (~15 days old) were used for FA detection 

experiments. 
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