51 research outputs found

    Mapping of sea ice and measurement of its drift using aircraft synthetic aperture radar images

    Get PDF
    Side-looking radar images of Arctic sea ice were obtained as part of the Arctic Ice Dynamics Joint Experiment. Repetitive coverages of a test site in the Arctic were used to measure sea ice drift, employing single images and blocks of overlapping radar image strips; the images were used in conjunction with data from the aircraft inertial navigation and altimeter. Also, independently measured, accurate positions of a number of ground control points were available. Initial tests of the method were carried out with repeated coverages of a land area on the Alaska coast (Prudhoe). Absolute accuracies achieved were essentially limited by the accuracy of the inertial navigation data. Errors of drift measurements were found to be about ±2.5 km. Relative accuracy is higher; its limits are set by the radar image geometry and the definition of identical features in sequential images. The drift of adjacent ice features with respect to one another could be determined with errors of less than ±0.2 km

    Structure from motion photogrammetry in forestry : a review

    Get PDF
    AbstractPurpose of ReviewThe adoption of Structure from Motion photogrammetry (SfM) is transforming the acquisition of three-dimensional (3D) remote sensing (RS) data in forestry. SfM photogrammetry enables surveys with little cost and technical expertise. We present the theoretical principles and practical considerations of this technology and show opportunities that SfM photogrammetry offers for forest practitioners and researchers.Recent FindingsOur examples of key research indicate the successful application of SfM photogrammetry in forestry, in an operational context and in research, delivering results that are comparable to LiDAR surveys. Reviewed studies have identified possibilities for the extraction of biophysical forest parameters from airborne and terrestrial SfM point clouds and derived 2D data in area-based approaches (ABA) and individual tree approaches. Additionally, increases in the spatial and spectral resolution of sensors available for SfM photogrammetry enable forest health assessment and monitoring. The presented research reveals that coherent 3D data and spectral information, as provided by the SfM workflow, promote opportunities to derive both structural and physiological attributes at the individual tree crown (ITC) as well as stand levels.SummaryWe highlight the potential of using unmanned aerial vehicles (UAVs) and consumer-grade cameras for terrestrial SfM-based surveys in forestry. Offering several spatial products from a single sensor, the SfM workflow enables foresters to collect their own fit-for-purpose RS data. With the broad availability of non-expert SfM software, we provide important practical considerations for the collection of quality input image data to enable successful photogrammetric surveys

    THE ULTRACAM STORY

    No full text
    The UltraCam-project created a novel Large Format Digital Aerial Camera. It was inspired by the ISPRS Congress 2000 in Amsterdam. The search for a promising imaging idea succeeded in May 2001, defining a tiling approach with multiple lenses and multiple area CCD arrays to assemble a seamless and geometrically stable monolithic photogrammetric aerial large format image. First resources were spent on the project in September 2011. The initial UltraCam-D was announced and demonstrated in May 2003. By now the imaging principle has resulted in a 4th generation UltraCam Eagle, increasing the original swath width from 11,500 pixels to beyond 20,000. Inspired by the original imaging principle, alternatives have been investigated, and the UltraCam-G carries the swath width even further, namely to a frame image with nearly 30,000 pixels, however, with a modified tiling concept and optimized for orthophoto production. We explain the advent of digital aerial large format imaging and how it benefits from improvements in computing technology to cope with data flows at a rate of 3 Gigabits per second and a need to deal with Terabytes of imagery within a single aerial sortie. We also address the many benefits of a transition to a fully digital workflow with a paradigm shift away from minimizing a project's number of aerial photographs and towards maximizing the automation of photogrammetric workflows by means of high redundancy imaging strategies. The instant gratification from near-real-time aerial triangulations and dense image matching has led to a reassessment of the value of photogrammetric point clouds to successfully compete with direct point cloud measurements by LiDAR

    INTERPRETATION OF 2D AND 3D BUILDING DETAILS ON FACADES AND ROOFS

    No full text
    Current Internet-inspired mapping data are in the form of street maps, orthophotos, 3D models or street-side images and serve to support mostly search and navigation. Yet the only mapping data that currently can really be searched are the street maps via their addresses and coordinates. The orthophotos, 3D models and street-side images represent predominantly “eye candy ” with little added value to the Internet-user. We are interested in characterizing the elements of the urban space from imagery. In this paper we discuss the use of street side imagery and aerial imagery to develop descriptions of urban spaces, initially of building facades and roofs. We present methods (a) to segment facades using high-overlap street side facade images, (b) to map facades and facade details from vertical aerial images, and (c) to characterize roofs by their type and details, also from aerial photography. This paper describes a method of roof segmentation with the goal of assigning each roof to a specific architectural style. Questions of the use of the attic space, or the placement of solar panels, are of interest. It is of interest that roofs have recently been mapped using LiDAR point clouds. We demonstrate that aerial images are a useful and economical alternative to LiDAR for the characterization of building roofs, and that they also contain very valuable information about facades. 1

    Robust active appearance models and their application to medical image analysis

    No full text
    • …
    corecore