187 research outputs found

    Mean and Flux Horizontal Variability of Virtual Potential Temperature, Moisture, and Carbon Dioxide: Aircraft Observations and LES Study

    Get PDF
    The effects of the horizontal variability of surface properties on the turbulent fluxes of virtual potential temperature, moisture, and carbon dioxide are investigated by combining aircraft observations with large-eddy simulations (LESs). Daytime fair-weather aircraft measurements from the 2002 International H2O ProjectÂżs 45-km Eastern Track over mixed grassland and winter wheat in southeast Kansas reveal that the western part of the atmospheric boundary layer was warmer and drier than the eastern part, with higher values of carbon dioxide to the east. The temperature and specific humidity patterns are consistent with the pattern of surface fluxes produced by the High-Resolution Land Data Assimilation System. However, the observed turbulent fluxes of virtual potential temperature, moisture, and carbon dioxide, computed as a function of longitude along the flight track, do not show a clear eastÂżwest trend. Rather, the fluxes at 70 m above ground level related better to the surface variability quantified in terms of the normalized differential vegetation index (NDVI), with strong correlation between carbon dioxide fluxes and NDVI

    Convectively Induced Secondary Circulations in Fine-Grid Mesoscale Numerical Weather Prediction Models

    Get PDF
    Mesoscale numerical weather prediction models using fine-grid [O(1) km] meshes for weather forecasting, environmental assessment, and other applications capture aspects of larger-than-grid-mesh size, convectively induced secondary circulations (CISCs) such as cells and rolls that occur in the convective planetary boundary layer (PBL). However, 1-km grid spacing is too large for the simulation of the interaction of CISCs with smaller-scale turbulence. The existence of CISCs also violates the neglect of horizontal gradients of turbulent quantities in current PBL schemes. Both aspects—poorly resolved CISCs and a violation of the assumptions behind PBL schemes—are examples of what occurs in Wyngaard’s “terra incognita,” where horizontal grid spacing is comparable to the scale of the simulated motions. Thus, model CISCs (M-CISCs) cannot be simulated reliably. This paper describes how the superadiabatic layer in the lower convective PBL together with increased horizontal resolution allow the critical Rayleigh number to be exceeded and thus allow generation of M-CISCs like those in nature; and how the M-CISCs eventually neutralize the virtual temperature stratification, lowering the Rayleigh number and stopping their growth. Two options for removing M-CISCs while retaining their fluxes are 1) introducing nonlocal closure schemes for more effective removal of heat from the surface and 2) restricting the effective Rayleigh number to remain subcritical. It is demonstrated that CISCs are correctly handled by large-eddy simulation (LES) and thus may provide a way to improve representation of them or their effects. For some applications, it may suffice to allow M-CISCs to develop, but account for their shortcomings during interpretation

    Interleukin 7 from Maternal Milk Crosses the Intestinal Barrier and Modulates T- Cell Development in Offspring

    Get PDF
    Background Breastfeeding protects against illnesses and death in hazardous environments, an effect partly mediated by improved immune function. One hypothesis suggests that factors within milk supplement the inadequate immune response of the offspring, but this has not been able to account for a series of observations showing that factors within maternally derived milk may supplement the development of the immune system through a direct effect on the primary lymphoid organs. In a previous human study we reported evidence suggesting a link between IL-7 in breast milk and the thymic output of infants. Here we report evidence in mice of direct action of maternally-derived IL-7 on T cell development in the offspring. Methods and Findings  We have used recombinant IL-7 labelled with a fluorescent dye to trace the movement in live mice of IL-7 from the stomach across the gut and into the lymphoid tissues. To validate the functional ability of maternally derived IL- 7 we cross fostered IL-7 knock-out mice onto normal wild type mothers. Subsets of thymocytes and populations of peripheral T cells were significantly higher than those found in knock-out mice receiving milk from IL-7 knock-out mothers. Conclusions/Significance Our study provides direct evidence that interleukin 7, a factor which is critical in the development of T lymphocytes, when maternally derived can transfer across the intestine of the offspring, increase T cell production in the thymus and support the survival of T cells in the peripheral secondary lymphoid tissue

    Neurologic Factors in Female Sexual Function and Dysfunction

    Get PDF
    Sexual dysfunction affects both men and women, involving organic disorders, psychological problems, or both. Overall, the state of our knowledge is less advanced regarding female sexual physiology in comparison with male sexual function. Female sexual dysfunction has received little clinical and basic research attention and remains a largely untapped field in medicine. The epidemiology of female sexual dysfunction is poorly understood because relatively few studies have been done in community settings. In the United States, female sexual dysfunction has been estimated to affect 40% of women in the general population. Among the elderly, however, it has been reported that up to 87% of women complain of sexual dissatisfaction. Several studies have shown that the prevalence of female sexual arousal disorders correlates significantly with increasing age. These studies have shown that sexual arousal and frequency of coitus in the female decreases with increasing age. The pathophysiology of female sexual dysfunction appears more complex than that of males, involving multidimensional hormonal, neurological, vascular, psychological, and interpersonal aspects. Organic female sexual disorders may include a wide variety of vascular, neural, or neurovascular factors that lead to problems with libido, lubrication, and orgasm. However, the precise etiology and mechanistic pathways of age-related female sexual arousal disorders are yet to be determined. In the past two decades, some advances have been made in exploring the basic hemodynamics and neuroregulation of female sexual function and dysfunction in both animal models and in human studies. In this review, we summarize neural regulation of sexual function and neurological causes of sexual dysfunction in women
    • …
    corecore