34 research outputs found

    Surfactants tailored by the class Actinobacteria

    Get PDF
    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application

    Surfactants tailored by the class Actinobacteria

    Get PDF
    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application

    Partial purification and characterisation of two actinomycete tyrosinases and their application in cross-linking reactions

    Get PDF
    Actinomycetes are a ubiquitous group of bacteria, and are hypothesised to produce tyrosinases for pro-tection against the potential toxic effect of phenolic compounds and for the production of melanin. In thisstudy, tyrosinase production by Streptomyces pharetrae CZA14T(CZA14Tyr) and Streptomyces polyantibi-oticus SPRT(SPRTyr) was optimised. The enzymes were partially purified and biochemically characterisedto determine their suitability for industrial applications. SPRTyr was stable up to 40◦C and at pH 4.5–10.0,while CZA14Tyr was stable up to 40◦C and at pH 6.5–10.0. The enzymes showed variable stability in thepresence of water-miscible organic solvents and were able to oxidize l-DOPA in the presence of these sol-vents. A limited inhibitory effect was observed with arbutin, EDTA, sodium chloride and sodium dodecylsulphate, while both enzymes were strongly inhibited by the reducing agents used in this study. Inhibi-tion of enzyme activity was observed in the presence of 1 mM Cu2+and 5 mM Co2+for SPRTyr, and 5 mMFe2+and 5 mM Zn2+for CZA14Tyr. When applied in various cross-linking reactions both tyrosinases wereable to cross-link casein and gelatine in the absence of a phenolic compound, showing potential forapplication in the food industry and for the production of biomaterials.National Research Foundation (NRF) of South Africa for project funding [Grant No. 73691] and Cape Peninsula University of Technology (CPUT) University Research Funding.http://www.elsevier.com/locate/molcatb2016-12-31hb201

    Selection of diazotrophic bacterial communities in biological sand filter mesocosms used for the treatment of phenolic-laden wastewater

    Get PDF
    Agri effluents such as winery or olive mill waste-waters are characterized by high phenolic concentrations. These compounds are highly toxic and generally refractory to biodegradation. Biological sand filters (BSFs) represent inexpensive, environmentally friendly, and sustainable wastewater treatment systems which rely vastly on microbial catabolic processes. Using denaturing gradient gel electrophoresis and terminal-restriction fragment length polymorphism, this study aimed to assess the impact of increasing concentrations of synthetic phenolic-rich wastewater, ranging from 96 mg L−1 gallic acid and138 mg L−1 vanillin (i.e., a total chemical oxygen demand (COD) of 234 mg L−1) to 2,400mg L−1 gallic acid and 3,442 mg L−1 vanillin (5,842 mg COD L−1), on bacterialcommunities and the specific functional diazotrophic community from BSF mesocosms. This amendment procedure instigated efficient BSF phenolic removal, significant modifications of the bacterial communities, and notably led to the selection of a phenolic-resistant and less diverse diazotrophic community. This suggests that bioavailable N is crucial in the functioning of biological treatment processes involving microbial communities, and thus that functional alterations in the bacterial communities in BSFs ensure provision of sufficient bioavailable nitrogen for the degradation of wastewater with a high C/N ratio.Web of Scienc

    Streptomyces aridus sp. nov., isolated from a high altitude Atacama Desert soil and emended description of Streptomyces noboritoensis Isono et al. 1957.

    Get PDF
    A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9(T), was found to have chemotaxonomic, cultural and morphological properties that place it in the genus Streptomyces. 16S rRNA gene sequence analyses showed that the isolate forms a distinct branch at the periphery of a well-delineated subclade in the Streptomyces 16S rRNA gene tree together with the type strains of Streptomyces crystallinus, Streptomyces melanogenes and Streptomyces noboritoensis. Multi-locus sequence analysis (MLSA) based on five house-keeping gene alleles showed that isolate H9(T) is closely related to the latter two type strains and to Streptomyces polyantibioticus NRRL B-24448(T). The isolate was distinguished readily from the type strains of S. melanogenes, S. noboritoensis and S. polyantibioticus using a combination of phenotypic properties. Consequently, the isolate is considered to represent a new species of Streptomyces for which the name Streptomyces aridus sp. nov. is proposed; the type strain is H9(T) (=NCIMB 14965(T)=NRRL B65268(T)). In addition, the MLSA and phenotypic data show that the S. melanogenes and S. noboritoensis type strains belong to a single species, it is proposed that S. melanogenes be recognised as a heterotypic synonym of S. noboritoensis for which an emended description is given. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10482-017-0838-2) contains supplementary material, which is available to authorized users

    Characterisation of winery wastewater from continuous flow settling basins and waste stabilisation ponds over the course of 1 year: implications for biological wastewater treatment and land application

    No full text
    Wineries generate 0.2 to 4 L of wastewater per litre of wine produced. Many cellars make use of irrigation as a means of disposal, either directly or after storage. In order to consider the potential downstream impacts of storage/no storage, this study critically compared the seasonal organic and inorganic composition of fresh winery effluent with effluent that had been stored in waste stabilisation ponds. Ethanol and short chain volatile fatty acids were the main contributors to chemical oxygen demand (COD), with average concentrations of 2,086 and 882 mgCOD/L, respectively. Total phenolics were typically present in concentrations <100 mg/L. The concentration of sodium from cleaning agents was higher in the non-crush season, while the converse was true for organics. The effluent was nitrogen-deficient for biological treatment, with COD:N ratios of 0.09 to 1.2. There was an accumulation of propionic and butyric acid during storage. The composition of the pond effluent was more stable in character, and it is possible that bacterial and algal nitrogen fixation in such systems may enhance biological wastewater treatment by natural nitrogen supplementation. It is therefore recommended that if land requirements can be met, winery effluent should be stored in ponds prior to treatment

    Generating an oxidative stress model in human skin cells for antioxidant testing

    No full text
    39th Conference of the Physiology Society of Southern Africa (PSSA

    The influence of grain physicochemistry and biomass on hydraulic conductivity in sand-filled treatment wetlands

    No full text
    The flow of effluent through treatment wetlands is influenced by the infrastructure set-up, the effluent character, the type of hydraulic flow, the mode of operation, the type of substrate, and the type and quantity of biomass. Current flow models have not been well validated, and/or do not accurately account for biomass clogging. In this study, treatment wetlands containing Dune or River sand with similar particle size distributions exhibited significant disparities in achievable flow rates. To gain insight into this phenomenon, further investigations were conducted to compare: (i) sand particle characteristics (size, elemental and mineral composition, grain morphology), (ii) the relationships between mineral composition and shape of the sand particles, (iii) the hydraulic conductivity of the different sand types before and after inducement of biomass growth, and (iv) the measured hydraulic conductivities with those predicted using the fractional packing Kozeny-Carman model. Using automated scanning electron microscopy (QEMSCAN™) it was determined that the shape of the quartz particles of the River sand (98% quartz) and calcite particles of the Dune sand (81% quartz, 18% calcite) were less round and more angular than the quartz particles of the Dune sand, and that the River sand particles were conglomerate in nature and/or fractured. The hydraulic conductivities of the Dune and River sands were significantly different (0.284 and 0.015 mm s−1, respectively), and the hydraulic conductivity of the Dune sand decreased by 51% due to biomass accumulation. The fractional packing model overestimated the measured values
    corecore