246 research outputs found

    Environmental stress and parasitism as drivers of population dynamics of Mesodesma donacium at its northern biogeographic range

    Get PDF
    Abstract Riascos, J. M., Heilmayer, O., Oliva, M. E., and Laudien, J. 2011. Environmental stress and parasitism as drivers of population dynamics of Mesodesma donacium at its northern biogeographic range. – ICES Journal of Marine Science, 68: 823–833. Mesodesma donacium is a commercially important bivalve in Chile and Peru. During strong El Niño events, populations at the northern end of its geographic distribution are wiped out, so to understand its threshold responses to biotic and abiotic factors, the population dynamics of one of the northernmost population remnants was analysed between 2005 and 2007. Strong interannual differences were found in abundance, body mass, growth rate, somatic production, and the prevalence of the parasite Polydora bioccipitalis. A Spearman rank correlation analysis showed that changes in beach slope, seemingly linked to repeated storm surges, negatively affected the clam's abundance and seemingly also affected growth, mortality, body mass somatic production, and parasite prevalence. Infestation by P. bioccipitalis was restricted to adult clams. Juvenile clams suffered high mortality because they inhabit the intertidal zone, where wave action is strong. Larger clams also showed high mortality, which seemed best explained by a synergistic effect of parasite load and environmental stress. This parasite-climate-driven mortality of larger clams had a strong impact on somatic production and implied a dramatic loss of fecundity (82%), which may significantly affect the ability of the species to recover its former abundance and distribution.</jats:p

    Integrated Value Configurations in the Sharing Economy

    Get PDF
    Sharing has become a new trend in business that heavily affects the ways how firms do business. Despite this important development, research by now only provides rudimentary insights into value configuration mechanisms applied in the sharing economy. Our paper that is inspired by extant research on value creation configurations as well as recent business model research develops a model of an integrated value network for the sharing economy. We explain that focal firms in sharing economy networks ground their business model configuration in the application of web-based technology. We further point to two dimensions that determine the positioning of the business model: the degree of individualization vs. standardization of the content and the degree of completeness of property rights

    Physicochemical influence on the spatial distribution of faecal bacteria and polychaetes in the Densu Estuary, Ghana

    Get PDF
    Coastal ecosystems are increasingly impacted by man-made disturbances including pollution from agriculture, aquaculture and municipal waste. This study employed multiple ecological indicators to assess environmental quality of the Densu Estuary and understanding of environmental controls on the spatial distribution of organisms. Physicochemical parameters were measured in situ. Water and sediment samples were collected from ten stations and analysed for nutrients, total suspended solids and organisms using standard methods. The water quality index for the Densu Estuary ranged from 359.5 to 484.4, suggesting an unhealthy ecosystem. The abundance of indicator species, e.g. faecal bacteria (Escherichia coli, Enterococcus species) and polychaetes (Capitella and Nereis species) varied significantly (p<0.05) among stations. Contaminated sites are located landwards with high human impacts. Faecal bacteria and polychaete abundance correlated significantly (p<0.05) with the respective physicochemical parameters. Canonical analysis (74.11%) showed the physicochemical influence on the spatial distribution of species. The pH significantly (p<0.05) controlled the spatial distribution of faecal bacteria and polychaetes in the Densu Estuary. The results suggest environmental pollution in the Densu Estuary, useful baseline information for effective legislation towards its sustainable management

    Intensified Neuronal Investment in the Processing of Chemosensory Anxiety Signals in Non-Socially Anxious and Socially Anxious Individuals

    Get PDF
    BACKGROUND: The ability to communicate anxiety through chemosensory signals has been documented in humans by behavioral, perceptual and brain imaging studies. Here, we investigate in a time-sensitive manner how chemosensory anxiety signals, donated by humans awaiting an academic examination, are processed by the human brain, by analyzing chemosensory event-related potentials (CSERPs, 64-channel recording with current source density analysis). METHODOLOGY/PRINCIPAL FINDINGS: In the first study cerebral stimulus processing was recorded from 28 non-socially anxious participants and in the second study from 16 socially anxious individuals. Each individual participated in two sessions, smelling sweat samples donated from either female or male donors (88 sessions; balanced session order). Most of the participants of both studies were unable to detect the stimuli olfactorily. In non-socially anxious females, CSERPs demonstrate an increased magnitude of the P3 component in response to chemosensory anxiety signals. The source of this P3 activity was allocated to medial frontal brain areas. In socially anxious females chemosensory anxiety signals require more neuronal resources during early pre-attentive stimulus processing (N1). The neocortical sources of this activity were located within medial and lateral frontal brain areas. In general, the event-related neuronal brain activity in males was much weaker than in females. However, socially anxious males processed chemosensory anxiety signals earlier (N1 latency) than the control stimuli collected during an ergometer training. CONCLUSIONS/SIGNIFICANCE: It is concluded that the processing of chemosensory anxiety signals requires enhanced neuronal energy. Socially anxious individuals show an early processing bias towards social fear signals, resulting in a repression of late attentional stimulus processing

    Sublittoral soft bottom communities and diversity of Mejillones Bay in northern Chile (Humboldt Current upwelling system)

    Get PDF
    The macrozoobenthos of Mejillones Bay (23°S; Humboldt Current) was quantitatively investigated over a 7-year period from austral summer 1995/1996 to winter 2002. About 78 van Veen grab samples taken at six stations (5, 10, 20 m depth) provided the basis for the analysis of the distribution of 60 species and 28 families of benthic invertebrates, as well as of their abundance and biomass. Mean abundance (2,119 individuals m-2) was in the same order compared to a previous investigation; mean biomass (966 g formalin wet mass m-2), however, exceeded prior estimations mainly due to the dominance of the bivalve Aulacomya ater. About 43% of the taxa inhabited the complete depth range. Mean taxonomic Shannon diversity (H', Log e) was 1.54 ± 0.58 with a maximum at 20 m (1.95 ± 0.33); evenness increased with depth. The fauna was numerically dominated by carnivorous gastropods, polychaetes and crustaceans (48%). About 15% of the species were suspensivorous, 13% sedimentivorous, 11% detritivorous, 7% omnivorous and 6% herbivorous. Cluster analyses showed a significant difference between the shallow and the deeper stations. Gammarid amphipods and the polychaete family Nephtyidae characterized the 5-mzone, the molluscs Aulacomya ater, Mitrella unifasciata and gammarids the intermediate zone, while the gastropod Nassarius gayi and the polychaete family Nereidae were most prominent at the deeper stations. The communities of the three depth zones did not appear to be limited by hypoxia during non-El Niño conditions. Therefore, no typical change in community structure occurred during El Niño 1997–1998, in contrast to what was observed for deeper faunal assemblages and hypoxic bays elsewhere in the coastal Humboldt Current system

    All you can eat: the functional response of the cold-water coral Desmophyllum dianthus feeding on krill and copepods

    Get PDF
    The feeding behavior of the cosmopolitan cold-water coral (CWC) Desmophyllum dianthus (Cnidaria: Scleractinia) is still poorly known. Its usual deep distribution restricts direct observations, and manipulative experiments are so far limited to prey that do not occur in CWC natural habitat. During a series of replicated incubations, we assessed the functional response of this coral feeding on a medium-sized copepod (Calanoides patagoniensis) and a large euphausiid (Euphausia vallentini). Corals showed a Type I functional response, where feeding rate increased linearly with prey abundance, as predicted for a tentaculate passive suspension feeder. No significant differences in feeding were found between prey items, and corals were able to attain a maximum feeding rate of 10.99 mg C h−1, which represents an ingestion of the 11.4% of the coral carbon biomass per hour. These findings suggest that D. dianthus is a generalist zooplankton predator capable of exploiting dense aggregations of zooplankton over a wide prey size-range

    Lipid biomarkers reveal trophic relationships and energetic trade‐offs in contrasting phenotypes of the cold‐water coral Desmophyllum dianthus in Comau Fjord, Chile

    Get PDF
    Benthic suspension feeders like corals and sponges are important bioengineers in many marine habitats, from the shallow tropics to the depth of polar oceans. While they are generally considered opportunistic, little is known about their actual in situ diet. To tackle this limitation, fatty acid trophic markers (FATMs) have been employed to gain insights into the composition of their diet. Yet, these in situ studies have not been combined with physiological investigations to understand how physiological limitations may modulate the biochemistry of these organisms. Here, we used the cold-water coral (CWC) Desmophyllum dianthus in its natural habitat in Comau Fjord (Northern Patagonia, Chile) as our model species to assess the trophic ecology in response to contrasting physico-chemical conditions (variable vs. stable) and ecological drivers (food availability) at three shallow sites and one deep site. We took advantage of the expression of two distinct phenotypes with contrasting performance (growth, biomass, respiration) coinciding with the differences in sampling depth. We analysed the corals' fatty acid composition to evaluate the utility of FATM profiles to gain dietary insights and assess how performance trade-offs potentially modulate an organism's FATM composition. We found that 20:1(n-9) zooplankton markers dominated the deep high-performance phenotype, while 20:5(n-3) and 22:6(n-3) diatom and flagellate markers, respectively, are more prominent in shallow low-performance phenotype. Surprisingly, both energy stores and performance were higher in the deep phenotype, in spite of measured lower zooplankton availability. Essential FA concentrations were conserved across sites, likely reflecting required levels for coral functioning and survival. While the deep high-performance phenotype met with these requirements, the low-performance phenotype appeared to need more energy to maintain functionality in its highly variable environment, potentially causing intrinsic re-allocations of energy and enrichment in certain essential markers (20:5(n-3), 22:6(n-3)). Our analysis highlights the biological and ecological insights that can be gained from FATM profiles in CWCs, but also cautions the reliability of FATM as diet tracers under limiting environmental conditions that may also be applicable to other marine organisms. Read the free Plain Language Summary for this article on the Journal blog

    Subtidal macrozoobenthos communities from northern Chile during and post El Niño 1997–1998

    No full text
    Despite a large amount of climatic and oceanographic information dealing with the recurring climate phenomenon El Niño (EN) and its well known impact on diversity of marine benthic communities, most published data are rather descriptive and consequently our understanding of the underlying mechanisms and processes that drive community structure during EN are still very scarce. In this study, we address two questions on the effects of EN on macrozoobenthic communities: (1) how does EN affect species diversity of the communities in northern Chile? and (2) is EN a phenomenon that restarts community assembling processes by affecting species interactions in northern Chile? To answer these questions, we compared species diversity and co-occurrence patterns of soft-bottoms macrozoobenthos communities from the continental shelf off northern Chile during (March 1998) and after (September 1998) the strong EN event 1997–1998. The methods used varied from species diversity and species co-occurrence analyses to multivariate ordination methods. Our results indicate that EN positively affects diversity of macrozoobenthos communities in the study area, increasing the species richness and diversity and decreasing the species dominance. EN represents a strong disturbance that affects species interactions that rule the species assembling processes in shallow-water, sea-bottom environments
    corecore