427 research outputs found

    Measurement of thermal properties of biological tissues and tissue-mimicking phantom with a dual-needle sensor

    Get PDF
    This work presents the measurement of the thermal properties of ex vivo biological tissues (i.e., porcine liver and kidney tissues) as a function of temperature, along with the thermal characterization of a tissue-mimicking agar-based phantom. The evaluation of the thermal properties was performed by the dual needle technique, adopting a sensor equipped with two needles, capable to deliver thermal energy to the biomaterial and monitor the related tissue thermal behavior. Measurements of thermal conductivity, thermal diffusivity, and volumetric heat capacity were conducted at room temperature and at temperatures relevant from a biological point of view, namely, body temperature and temperatures of similar to 60 degrees C- 65 degrees C, which are typically correlated to instantaneous thermal damage in tissue. Thermal properties of biological tissue remained rather constant at the investigated temperatures: average values of thermal conductivity ranged from 0.515 W/(m.K) to 0.575 W/(m.K), thermal diffusivity ranged from 0.144 mm(2)/s to 0.163 mm2/s, whilst the average volumetric heat capacity was from 3.48 MJ/(m(3).K) to 3.72 MJ/(m(3).K). Furthermore, the thermal properties of the realized agar phantom were comparable to the ones of biological tissues. The results of this study provide valuable information for the characterization of porcine liver and kidney tissues, in terms of their thermal properties, to be used in predictive mathematical models of thermal therapies and validate the usage of agar phantoms as tissue-mimicking materials

    RTM process monitoring and strain acquisition by fibre optics

    Get PDF
    Abstract The development of Resin Transfer Moulding technology for advanced applications requires a detailed analysis and control of the process. Fibres optics and Fibres Bragg Gratings are useful tools to investigate composite structures during their lifetime service. They are here employed for the monitoring of manufacturing phase and the acquisition of strains during product usage in service. The adopted monitoring procedure allows to follow all the stages of the production process, evidencing their possible influences over final laminate characteristics. Resin injection, curing and cooling, mould extraction, sensor position, deformation control during mechanical testing are analysed on the basis of the signal output from fibre optic sensors embedded in a model component

    Sharing health data among general practitioners: The Nu.Sa. project

    Get PDF
    Today, e-health has entered the everyday work flow in the form of a variety of healthcare providers. General practitioners (GPs) are the largest category in the public sanitary service, with about 60,000 GPs throughout Italy. Here, we present the Nu.Sa. project, operating in Italy, which has established one of the first GP healthcare information systems based on heterogeneous data sources. This system connects all providers and provides full access to clinical and health-related data. This goal is achieved through a novel technological infrastructure for data sharing based on interoperability specifications recognised at the national level for messages transmitted from GP providers to the central domain. All data standards are publicly available and subjected to continuous improvement. Currently, the system manages more than 5,000 GPs with about 5,500,000 patients in total, with 4,700,000 pharmacological e-prescriptions and 1,700,000 e-prescriptions for laboratory exams per month. Hence, the Nu.Sa. healthcare system that has the capacity to gather standardised data from 16 different form of GP software, connecting patients, GPs, healthcare organisations, and healthcare professionals across a large and heterogeneous territory through the implementation of data standards with a strong focus on cybersecurity. Results show that the application of this scenario at a national level, with novel metrics on the architecture's scalability and the software's usability, affect the sanitary system and on GPs’ professional activities

    Characterization of Susceptibility Artifacts in MR-thermometry PRFS-based during Laser Interstitial Thermal Therapy

    Get PDF
    Magnetic Resonance Thermometry (MRT) is demonstrating huge abilities to guide laser interstitial thermal therapy (LITT) in several organs, such as the brain. Among the methods to perform MRT, Proton Resonance Frequency (PRF) shift holds significant benefits, like tissue independence. Despite its potential, PRF shift-based MRT holds significant challenges affecting the accuracy of reconstructed temperature maps. In particular, susceptibility artifacts due to gas-bubble formation are an important source of error in temperature maps in MRT-guided LITT. This work presents the characterization of the susceptibility artifacts in MRT-guided LITT and the measurement of its size. LITT was performed in gelatin-based phantoms, at 5 W, 2 W, 1 W, and 0.5 W under MRI guidance with a 1.5 T clinical MRI scanner. Temperature images were obtained with a 3D EPI (Echo planar imaging) prototype sequence. Areas of temperature errors were defined as zones of negative temperature variation <-2 degrees C. Moreover, we have analyzed the artifact shape in sagittal, axial and coronal planes. The analysis demonstrates a double-lobe shape for the susceptibility artifact mainly distributed in the sagittal plane. Also, the higher laser power caused a bigger artifact area. Temperature errors of similar to 80 degrees C proved the necessity to avoid susceptibility artifact generation during MRT-guided LITT. The analysis of the influence of the laser power on the artifact has suggested that using low laser power (0.5 W) helps avoid this measurement error

    Filaggrin mutations in relation to skin barrier and atopic dermatitis in early infancy

    Get PDF
    Background Loss-of-function mutations in the skin barrier gene filaggrin (FLG) increase the risk of atopic dermatitis (AD), but their role in skin barrier function, dry skin and eczema in infancy is unclear. Objectives To determine the role of FLG mutations in impaired skin barrier function, dry skin, eczema and AD at 3 months of age and throughout infancy. Methods FLG mutations were analysed in 1836 infants in the Scandinavian population-based PreventADALL study. Transepidermal water loss (TEWL), dry skin, eczema and AD were assessed at 3, 6 and 12 months of age. Results FLG mutations were observed in 166 (9%) infants. At 3 months, carrying FLG mutations was not associated with impaired skin barrier function (TEWL > 11 center dot 3 g m(-2) h(-1)) or dry skin, but was associated with eczema [odds ratio (OR) 2 center dot 89, 95% confidence interval (CI) 1 center dot 95-4 center dot 28; P < 0 center dot 001]. At 6 months, mutation carriers had significantly higher TEWL than nonmutation carriers [mean 9 center dot 68 (95% CI 8 center dot 69-10 center dot 68) vs. 8 center dot 24 (95% CI 7 center dot 97-8 center dot 15), P < 0 center dot 01], and at 3 and 6 months mutation carriers had an increased risk of dry skin on the trunk (OR 1 center dot 87, 95% CI 1 center dot 25-2 center dot 80; P = 0 center dot 002 and OR 2 center dot 44, 95% CI 1 center dot 51-3 center dot 95; P < 0 center dot 001) or extensor limb surfaces (OR 1 center dot 52, 95% CI 1 center dot 04-2 center dot 22; P = 0 center dot 028 and OR 1 center dot 74, 95% CI 1 center dot 17-2 center dot 57; P = 0 center dot 005). FLG mutations were associated with eczema and AD in infancy. Conclusions FLG mutations were not associated with impaired skin barrier function or dry skin in general at 3 months of age, but increased the risk for eczema, and for dry skin on the trunk and extensor limb surfaces at 3 and 6 months.Peer reviewe
    • …
    corecore