17 research outputs found

    Illustrating the Charrette Process

    Get PDF
    A dialogue on possibilities for West Stadium

    Causality, particle localization and positivity of the energy

    Full text link
    Positivity of the Hamiltonian alone is used to show that particles, if initially localized in a finite region, immediately develop infinite tails.Comment: To appear in: Irreversibility and Causality in Quantum Theory -- Semigroups and Rigged Hilbert Spaces, edited by A. Bohm, H.-D. Doebner and P. Kielanowski, Springer Lecture Notes in Physics, Vol. 504 (1998

    Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling

    Get PDF
    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models

    Amygdala activity and prefrontal cortex-amygdala effective connectivity to emerging emotional faces distinguish remitted and depressed mood states in bipolar disorder [Review]

    No full text
    OBJECTIVES: Few studies have employed effective connectivity (EC) to examine the functional integrity of neural circuitry supporting abnormal emotion processing in bipolar disorder (BD), a key feature of the illness. We used Granger Causality Mapping (GCM) to map EC between the prefrontal cortex (PFC) and bilateral amygdala and a novel paradigm to assess emotion processing in adults with BD. METHODS: Thirty-one remitted adults with BD [(remitted BD), mean age = 32 years], 21 adults with BD in a depressed episode [(depressed BD), mean age = 33 years], and 25 healthy control participants [(HC), mean age = 31 years] performed a block-design emotion processing task requiring color-labeling of a color flash superimposed on a task-irrelevant face morphing from neutral to emotional (happy, sad, angry, or fearful). GCM measured EC preceding (top-down) and following (bottom-up) activity between the PFC and the left and right amygdalae. RESULTS: Our findings indicated patterns of abnormally elevated bilateral amygdala activity in response to emerging fearful, sad, and angry facial expressions in remitted-BD subjects versus HC, and abnormally elevated right amygdala activity to emerging fearful faces in depressed-BD subjects versus HC. We also showed distinguishable patterns of abnormal EC between the amygdala and dorsomedial and ventrolateral PFC, especially to emerging happy and sad facial expressions in remitted-BD and depressed-BD subjects. DISCUSSION: EC measures of neural system level functioning can further understanding of neural mechanisms associated with abnormal emotion processing and regulation in BD. Our findings suggest major differences in recruitment of amygdala-PFC circuitry, supporting implicit emotion processing between remitted-BD and depressed-BD subjects, which may underlie changes from remission to depression in BD

    Dissociable patterns of medial prefrontal and amygdala activity to face identity versus emotion in bipolar disorder

    No full text
    BACKGROUND: Individuals with bipolar disorder demonstrate abnormal social function. Neuroimaging studies in bipolar disorder have shown functional abnormalities in neural circuitry supporting face emotion processing, but have not examined face identity processing, a key component of social function. We aimed to elucidate functional abnormalities in neural circuitry supporting face emotion and face identity processing in bipolar disorder. METHOD: Twenty-seven individuals with bipolar disorder I currently euthymic and 27 healthy controls participated in an implicit face processing, block-design paradigm. Participants labeled color flashes that were superimposed on dynamically changing background faces comprising morphs either from neutral to prototypical emotion (happy, sad, angry and fearful) or from one identity to another identity depicting a neutral face. Whole-brain and amygdala region-of-interest (ROI) activities were compared between groups. RESULTS: There was no significant between-group difference looking across both emerging face emotion and identity. During processing of all emerging emotions, euthymic individuals with bipolar disorder showed significantly greater amygdala activity. During facial identity and also happy face processing, euthymic individuals with bipolar disorder showed significantly greater amygdala and medial prefrontal cortical activity compared with controls. CONCLUSIONS: This is the first study to examine neural circuitry supporting face identity and face emotion processing in bipolar disorder. Our findings of abnormally elevated activity in amygdala and medial prefrontal cortex (mPFC) during face identity and happy face emotion processing suggest functional abnormalities in key regions previously implicated in social processing. This may be of future importance toward examining the abnormal self-related processing, grandiosity and social dysfunction seen in bipolar disorder

    Heterogeneity of amygdala response in major depressive disorder: the impact of lifetime subthreshold mania

    No full text
    BACKGROUND: Patients with major depressive disorder (MDD) present with highly heterogeneous symptom profiles. We aimed to examine whether individual differences in amygdala activity to emotionally salient stimuli were related to heterogeneity in lifetime levels of depressive and subthreshold manic symptoms among adults with MDD. METHOD: We compared age- and gender-matched adults with MDD (n = 26) with healthy controls (HC, n = 28). While undergoing functional magnetic resonance imaging, participants performed an implicit emotional faces task: they labeled a color flash superimposed upon initially neutral faces that dynamically morphed into one of four emotions (angry, fearful, sad, happy). Region of interest analyses examined group differences in amygdala activity. For conditions in which adults with MDD displayed abnormal amygdala activity versus HC, within-group analyses examined amygdala activity as a function of scores on a continuous measure of lifetime depression-related and mania-related pathology. RESULTS: Adults with MDD showed significantly greater right-sided amygdala activity to angry and happy conditions than HC (p < 0.05, corrected). Multiple regression analyses revealed that greater right-amygdala activity to the happy condition in adults with MDD was associated with higher levels of subthreshold manic symptoms experienced across the lifespan (p = 0.002). CONCLUSIONS: Among depressed adults with MDD, lifetime features of subthreshold mania were associated with abnormally elevated amygdala activity to emerging happy faces. These findings are a first step toward identifying biomarkers that reflect individual differences in neural mechanisms in MDD, and challenge conventional mood disorder diagnostic boundaries by suggesting that some adults with MDD are characterized by pathophysiological processes that overlap with bipolar disorder

    Dissociable patterns of medial prefrontal and amygdala activity to face identity versus

    No full text
    BACKGROUND: Individuals with bipolar disorder demonstrate abnormal social function. Neuroimaging studies in bipolar disorder have shown functional abnormalities in neural circuitry supporting face emotion processing, but have not examined face identity processing, a key component of social function. We aimed to elucidate functional abnormalities in neural circuitry supporting face emotion and face identity processing in bipolar disorder. METHOD: Twenty-seven individuals with bipolar disorder I currently euthymic and 27 healthy controls participated in an implicit face processing, block-design paradigm. Participants labeled color flashes that were superimposed on dynamically changing background faces comprising morphs either from neutral to prototypical emotion (happy, sad, angry and fearful) or from one identity to another identity depicting a neutral face. Whole-brain and amygdala region-of-interest (ROI) activities were compared between groups. RESULTS: There was no significant between-group difference looking across both emerging face emotion and identity. During processing of all emerging emotions, euthymic individuals with bipolar disorder showed significantly greater amygdala activity. During facial identity and also happy face processing, euthymic individuals with bipolar disorder showed significantly greater amygdala and medial prefrontal cortical activity compared with controls. CONCLUSIONS: This is the first study to examine neural circuitry supporting face identity and face emotion processing in bipolar disorder. Our findings of abnormally elevated activity in amygdala and medial prefrontal cortex (mPFC) during face identity and happy face emotion processing suggest functional abnormalities in key regions previously implicated in social processing. This may be of future importance toward examining the abnormal self-related processing, grandiosity and social dysfunction seen in bipolar disorder

    Learning progressions as a tool for classroom practice

    Get PDF
    Differentiating bipolar from recurrent unipolar depression is a major clinical challenge. In 18 healthy females and 36 females in a depressive episode - 18 with bipolar disorder type I, 18 with recurrent unipolar depression - we applied pattern recognition analysis using subdivisions of anterior cingulate cortex (ACC) blood flow at rest, measured with arterial spin labelling. Subgenual ACC blood flow classified unipolar v. bipolar depression with 81% accuracy (83% sensitivity, 78% specificity)
    corecore