36 research outputs found

    The sidereal semi-diurnal variation observed at high zenith angles at Mawson, 1968-1984, and the polarity of the solar main field

    Get PDF
    High zenith-angle North/South telescopes viewing equatorially and at midlatitudes through 40 MWE of atmosphere have been operating at Mawson since early 1968. It is evident that a sidereal semi-diurnal component of galactic origin has been observed, over and above a possible spurious component proposed by Nagashima, arising from a bi-directional component of the solar anisotropy. Although a very pronounced reduction in the semi-diurnal galactic response followed the reversal of polarity of the solar main field during 1969 to 1971, so far the observations indicate that there has been no recurrence of a larger galactic response following the reversal of polarity around 1981. The possible role of the latitudional extent lambda omicron of the wavy neutral sheet is discussed

    Isotropic intensity waves and features of their occurrence

    Get PDF
    Waves of daily average cosmic ray intensity, dependent on interplanetary magnetic fields (IMF) polarity, have been observed in 1982 (Jacklyn and Pomerantz, 1983) and again in 1983 and 1984. These waves at first appeared to be due to the North-South anisotropy. Further investigation revealed that the waves comprise two components, a large isotropic and a smaller anisotropic component. The anisotropic part is attributed to the North-South anisotropy and is in phase with the larger isotropic component in the Southern Hemisphere. Unlike the North-South anisotropy which is a permanent feature of cosmic ray modulation, the isotropic phenomenon appears to be episodic in character. When present, it is clearly dependent on IMF polarity but does not correlate well with IMF field strength. It is conjectured that the phenomenon might indicate some difference between the intensity regimes above and below the neutral sheet

    An Improved Model for Relativistic Solar Proton Acceleration applied to the 2005 January 20 and Earlier Events

    Full text link
    This paper presents results on modelling the ground level response of the higher energy protons for the 2005 January 20 ground level enhancement (GLE). This event, known as GLE 69, produced the highest intensity of relativistic solar particles since the famous event on 1956 February 23. The location of recent X-ray and gamma-ray emission (N14 W61) was near to Sun-Earth connecting magnetic field lines, thus providing the opportunity to directly observe the acceleration source from Earth. We restrict our analysis to protons of energy greater than 450 MeV to avoid complications arising from transport processes that can affect the propagation of low energy protons. In light of this revised approach we have reinvestigated two previous GLEs: those of 2000 July 14 (GLE 59) and 2001 April 15 (GLE 60). Within the limitations of the spectral forms employed, we find that from the peak (06:55 UT) to the decline (07:30 UT) phases of GLE 69, neutron monitor observations from 450 MeV to 10 GeV are best fitted by the Gallegos-Cruz & Perez-Peraza stochastic acceleration model. In contrast, the Ellison & Ramaty spectra did not fit the neutron monitor observations as well. This result suggests that for GLE 69, a stochastic process cannot be discounted as a mechanism for relativistic particle acceleration, particularly during the initial stages of this solar event. For GLE 59 we find evidence that more than one acceleration mechanism was present, consistent with both shock and stochastic acceleration processes dominating at different times of the event. For GLE 60 we find that Ellison & Ramaty spectra better represent the neutron monitor observations compared to stochastic acceleration spectra. The results for GLEs 59 and 60 are in agreement with our previous work.Comment: 42 pages, 10 figures, 10 tables, published in ApJ, August 200

    Australian Cosmic Ray Modulation Research

    Get PDF
    Australian research into variations of the cosmic ray flux arriving at the Earth has played a pivotal role for more than 50 years. The work has been largely led by the groups from the University of Tasmania and the Australian Antarctic Division and has involved the operation of neutron monitors and muon telescopes from many sites. In this paper the achievements of the Australian researchers are reviewed and future experiments are described. Particular highlights include: the determination of cosmic ray modulation parameters; the development of modelling techniques of Ground Level Enhancements; the confirmation of the Tail-In and Loss-Cone Sidereal anisotropies; the Space Ship Earth collaboration; and the Solar Cycle latitude survey.Comment: 47 pages, 37 figures, LaTeX, invited review, in press PASA 18(1). HTML version available at http://www.atnf.csiro.au/pasa/18_1/duldig/paper

    Relativistic Proton Production During the 14 July 2000 Solar Event: The Case for Multiple Source Mechanisms

    Full text link
    Protons accelerated to relativistic energies by transient solar and interplanetary phenomena caused a ground-level cosmic ray enhancement on 14 July 2000, Bastille Day. Near-Earth spacecraft measured the proton flux directly and ground-based observatories measured the secondary responses to higher energy protons. We have modelled the arrival of these relativistic protons at Earth using a technique which deduces the spectrum, arrival direction and anisotropy of the high-energy protons that produce increased responses in neutron monitors. To investigate the acceleration processes involved we have employed theoretical shock and stochastic acceleration spectral forms in our fits to spacecraft and neutron monitor data. During the rising phase of the event (10:45 UT and 10:50 UT) we find that the spectrum between 140 MeV and 4 GeV is best fitted by a shock acceleration spectrum. In contrast, the spectrum at the peak (10:55 UT and 11:00 UT) and in the declining phase (11:40 UT) is best fitted with a stochastic acceleration spectrum. We propose that at least two acceleration processes were responsible for the production of relativistic protons during the Bastille Day solar event: (1) protons were accelerated to relativistic energies by a shock, presumably a coronal mass ejection (CME). (2) protons were also accelerated to relativistic energies by stochastic processes initiated by magnetohydrodynamic (MHD) turbulence.Comment: 38 pages, 9 figures, accepted for publication in the Astrophysical Journal, January, 200

    Cosmic ray short burst observed with the Global Muon Detector Network (GMDN) on June 22, 2015

    Get PDF
    We analyze the short cosmic ray intensity increase ("cosmic ray burst": CRB) on June 22, 2015 utilizing a global network of muon detectors and derive the global anisotropy of cosmic ray intensity and the density (i.e. the omnidirectional intensity) with 10-minute time resolution. We find that the CRB was caused by a local density maximum and an enhanced anisotropy of cosmic rays both of which appeared in association with Earth's crossing of the heliospheric current sheet (HCS). This enhanced anisotropy was normal to the HCS and consistent with a diamagnetic drift arising from the spatial gradient of cosmic ray density, which indicates that cosmic rays were drifting along the HCS from the north of Earth. We also find a significant anisotropy along the HCS, lasting a few hours after the HCS crossing, indicating that cosmic rays penetrated into the inner heliosphere along the HCS. Based on the latest geomagnetic field model, we quantitatively evaluate the reduction of the geomagnetic cut-off rigidity and the variation of the asymptotic viewing direction of cosmic rays due to a major geomagnetic storm which occurred during the CRB and conclude that the CRB is not caused by the geomagnetic storm, but by a rapid change in the cosmic ray anisotropy and density outside the magnetosphere.Comment: accepted for the publication in the Astrophysical Journa

    AVERAGE SPATIAL DISTRIBUTION OF COSMIC RAYS BEHIND THE INTERPLANETARY SHOCK-GLOBAL MUON DETECTOR NETWORK OBSERVATIONS

    Get PDF
    We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in the western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east-west asymmetry is more prominent in GMDN data responding to similar to 60 GV GCRs than in NM data responding to similar to 10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic-y component of the density gradient, G(y), shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G(z) shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average Gz changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.ArticleASTROPHYSICAL JOURNAL. 825(2):100 (2016)journal articl

    Solar Magnetic Polarity Effect on Neutron Monitor Count Rates: Comparing Latitude Surveys and Antarctic Stations

    Full text link
    The Galactic cosmic ray spectrum manifests pronounced variations over the 11-year sunspot cycle and more subtle variations over the 22-year solar magnetic cycle. An important tool to study these variations is repeated latitude surveys with neutron monitors (NMs) onboard icebreakers in conjunction with land-based references. We revisit 13 annual latitude surveys from 1994 to 2007 using reference data from the Mawson NM instead of McMurdo NM (which closed in 2017). We then consider two more latitude surveys (2018 and 2019) with a monitor similar to the 3NM64 in the previous surveys but without lead rings around the central tube, a so-called ``semi-leaded neutron monitor.'' The new surveys extend the linear relationship among data taken at different cutoff rigidity ranges. They also confirm the ``crossover'' measured near solar minima during epochs of opposite solar magnetic polarity and the absence of a crossover for epochs having the same solar magnetic polarity.Comment: Accepted for publication in Astrophys.
    corecore