57 research outputs found

    Assessment Techniques Corresponding to Scientific Texts in Commercial Reading Programs: Do They Promote Scientific Literacy?

    Get PDF
    This research is part of a larger study of commercial reading programs used in Canada in grades 1-6. The specific purposes of the results reported here were to identify and quantify the assessment techniques suggested for the selections that contain scientific content, to show how the assessments differ by grade, to evaluate the nature and quality of the assessments, and to examine the extent to which the assessments help foster scientific literacy. It was found that the assessments occurred in six major forms and employed about a dozen assessment tools that engage students in nearly 20 tasks. Such variety is endorsed in both literacy and science education position statements. The assessments showed some weak trends by grade, but primarily left the purpose of the assessments to teachers’ judgment. The consequence is that teachers probably will choose the assessments for formative rather than summative evaluation, an approach also endorsed by literacy and science education policy statements. Hardly any of the assessments focused on the specificities of learning to read texts that are scientific such as interpreting descriptions of methods and research findings and thus had limited use in promoting this particular aspect of scientific literacy

    Characterisation of a Coriolis flow meter for fuel consumption measurements in realistic drive cycle tests

    Get PDF
    When testing light-duty and heavy-duty vehicles on chassis dynamometers, as in the WLTP, or engines on engine test benches, as in the WHDC, it is required to measure the fuel consumption. In the preferable case, the measurement of the fuel consumption is carried out with suitable flow meters. These require high measurement accuracy in a wide flow range, independent of the fuel type, as the flow rate range is often very large and depends on the power range of the vehicle engines. Moreover, the fuel flow rate in the test cycles is very dynamically related to the loads. In the scope of the ongoing EMPIR Joint Research Project 20IND13 SAFEST the dynamic flow behaviour as well as the measurement accuracy of flow meters for different types of fuels are investigated. This paper presents first results from the realisation of dynamic flow profiles, and flow measurements with a Coriolis Flow Meter with different representative fuels in a wide density and viscosity range and a wide flow rate range at different fuel temperatures

    Nonorographic generation of Arctic polar stratospheric clouds during

    Get PDF
    [1] During December 1999, polar stratospheric clouds (PSCs) were observed in the absence of conditions conducive to generation by topographic gravity waves. The possibility is explored that PSCs can be generated by inertia gravity waves (IGW) radiating from breaking synoptic-scale Rossby waves on the polar front jet. The aerosol features on 7 and 12 December are selected for comparison with theory and with simulations using the University of Wisconsin Nonhydrostatic Modeling System (UWNMS). Consistent with Rossby adjustment theory, a common feature in the UWNMS simulations is radiation of IGW from the tropopause polar front jet, especially from sectors which are evolving rapidly in the Rossby wave breaking process. Packets of gravity wave energy radiate upward and poleward into the cold pool, while individual wave crests propagate poleward and downward, causing mesoscale variations in vertical motion and temperature. On 12 December the eastbound DC-8 lidar observations exhibited a fairly uniform field of six waves in aerosol enhancement in the 14-20 km layer, consistent with vertical displacement by a field of IGW propagating antiparallel to the flow, with characteristic horizontal and vertical wavelengths of 300and300 and 10 km. UWNMS simulations show emanation of a field of IGW upward and southwestward from a northward incursion of the polar front jet. The orientation and evolution of the aerosol features on 7 December are consistent with a single PSC induced by an IGW packet propagating from a breaking Rossby wave over western Russia toward the northeast into the coldest part of the base of the polar vortex, with characteristic period 9hours,verticalwavelength9 hours, vertical wavelength 12 km, and horizontal wavelength 1000km.Lineartheoryshowsthatforbothofthesecases,IGWenergypropagatesupwardat1000 km. Linear theory shows that for both of these cases, IGW energy propagates upward at 1 km/hour and horizontally at 100km/hour,withcharacteristictracespeed100 km/hour, with characteristic trace speed 30 m/s. The spatial orientation of the PSC along IGW phase lines is contrasted with the nearly horizontal filamentary structures in the PSC, which are indicative of flow streamlines. It is suggested that vertical displacement is a crucial factor in determining whether a PSC will form and that most PSCs are relatable to specific synoptic and mesoscale motions

    Nonorographic generation of Arctic polar stratospheric clouds during

    Get PDF
    [1] During December 1999, polar stratospheric clouds (PSCs) were observed in the absence of conditions conducive to generation by topographic gravity waves. The possibility is explored that PSCs can be generated by inertia gravity waves (IGW) radiating from breaking synoptic-scale Rossby waves on the polar front jet. The aerosol features on 7 and 12 December are selected for comparison with theory and with simulations using the University of Wisconsin Nonhydrostatic Modeling System (UWNMS). Consistent with Rossby adjustment theory, a common feature in the UWNMS simulations is radiation of IGW from the tropopause polar front jet, especially from sectors which are evolving rapidly in the Rossby wave breaking process. Packets of gravity wave energy radiate upward and poleward into the cold pool, while individual wave crests propagate poleward and downward, causing mesoscale variations in vertical motion and temperature. On 12 December the eastbound DC-8 lidar observations exhibited a fairly uniform field of six waves in aerosol enhancement in the 14-20 km layer, consistent with vertical displacement by a field of IGW propagating antiparallel to the flow, with characteristic horizontal and vertical wavelengths of 300and300 and 10 km. UWNMS simulations show emanation of a field of IGW upward and southwestward from a northward incursion of the polar front jet. The orientation and evolution of the aerosol features on 7 December are consistent with a single PSC induced by an IGW packet propagating from a breaking Rossby wave over western Russia toward the northeast into the coldest part of the base of the polar vortex, with characteristic period 9hours,verticalwavelength9 hours, vertical wavelength 12 km, and horizontal wavelength 1000km.Lineartheoryshowsthatforbothofthesecases,IGWenergypropagatesupwardat1000 km. Linear theory shows that for both of these cases, IGW energy propagates upward at 1 km/hour and horizontally at 100km/hour,withcharacteristictracespeed100 km/hour, with characteristic trace speed 30 m/s. The spatial orientation of the PSC along IGW phase lines is contrasted with the nearly horizontal filamentary structures in the PSC, which are indicative of flow streamlines. It is suggested that vertical displacement is a crucial factor in determining whether a PSC will form and that most PSCs are relatable to specific synoptic and mesoscale motions

    Geolocators lead to better measures of timing and renesting in black-tailed godwits and reveal the bias of traditional observational methods

    Get PDF
    Long-term population studies can identify changes in population dynamics over time. However, to realize meaningful conclusions, these studies rely on accurate measurements of individual traits and population characteristics. Here, we evaluate the accuracy of the observational methods used to measure reproductive traits in individually marked black-tailed godwits (Limosa limosa limosa). By comparing estimates from traditional methods with data obtained from light-level geolocators, we provide an accurate estimate of the likelihood of renesting in godwits and the repeatability of the lay dates of first clutches. From 2012 to 2018, we used periods of shading recorded on the light-level geolocators carried by 68 individual godwits to document their nesting behaviour. We then compared these estimates to those simultaneously obtained by our long-term observational study. We found that among recaptured geolocator-carrying godwits, all birds renested after a failed first clutch, regardless of the date of nest loss or the number of days already spent incubating. We also found that 43% of these godwits laid a second replacement clutch after a failed first replacement, and that 21% of these godwits renested after a hatched first clutch. However, the observational study correctly identified only 3% of the replacement clutches produced by geolocator-carrying individuals and designated as first clutches a number of nests that were actually replacement clutches. Additionally, on the basis of the observational study, the repeatability of lay date was 0.24 (95% CI 0.17-0.31), whereas it was 0.54 (95% CI 0.28-0.75) using geolocator-carrying individuals. We use examples from our own and other godwit studies to illustrate how the biases in our observational study discovered here may have affected the outcome of demographic estimates, individual-level comparisons, and the design, implementation and evaluation of conservation practices. These examples emphasize the importance of improving and validating field methodologies and show how the addition of new tools can be transformational

    Continuous Requirement for the Clr4 Complex But Not RNAi for Centromeric Heterochromatin Assembly in Fission Yeast Harboring a Disrupted RITS Complex

    Get PDF
    Formation of centromeric heterochromatin in fission yeast requires the combined action of chromatin modifying enzymes and small RNAs derived from centromeric transcripts. Positive feedback mechanisms that link the RNAi pathway and the Clr4/Suv39h1 histone H3K9 methyltransferase complex (Clr-C) result in requirements for H3K9 methylation for full siRNA production and for siRNA production to achieve full histone methylation. Nonetheless, it has been proposed that the Argonaute protein, Ago1, is the key initial trigger for heterochromatin assembly via its association with Dicer-independent “priRNAs.” The RITS complex physically links Ago1 and the H3-K9me binding protein Chp1. Here we exploit an assay for heterochromatin assembly in which loss of silencing by deletion of RNAi or Clr-C components can be reversed by re-introduction of the deleted gene. We showed previously that a mutant version of the RITS complex (Tas3WG) that biochemically separates Ago1 from Chp1 and Tas3 proteins permits maintenance of heterochromatin, but prevents its formation when Clr4 is removed and re-introduced. Here we show that the block occurs with mutants in Clr-C, but not mutants in the RNAi pathway. Thus, Clr-C components, but not RNAi factors, play a more critical role in assembly when the integrity of RITS is disrupted. Consistent with previous reports, cells lacking Clr-C components completely lack H3K9me2 on centromeric DNA repeats, whereas RNAi pathway mutants accumulate low levels of H3K9me2. Further supporting the existence of RNAi–independent mechanisms for establishment of centromeric heterochromatin, overexpression of clr4+ in clr4Δago1Δ cells results in some de novo H3K9me2 accumulation at centromeres. These findings and our observation that ago1Δ and dcr1Δ mutants display indistinguishable low levels of H3K9me2 (in contrast to a previous report) challenge the model that priRNAs trigger heterochromatin formation. Instead, our results indicate that RNAi cooperates with RNAi–independent factors in the assembly of heterochromatin

    Silent chromatin at the middle and ends: lessons from yeasts

    Get PDF
    Eukaryotic centromeres and telomeres are specialized chromosomal regions that share one common characteristic: their underlying DNA sequences are assembled into heritably repressed chromatin. Silent chromatin in budding and fission yeast is composed of fundamentally divergent proteins tat assemble very different chromatin structures. However, the ultimate behaviour of silent chromatin and the pathways that assemble it seem strikingly similar among Saccharomyces cerevisiae (S. cerevisiae), Schizosaccharomyces pombe (S. pombe) and other eukaryotes. Thus, studies in both yeasts have been instrumental in dissecting the mechanisms that establish and maintain silent chromatin in eukaryotes, contributing substantially to our understanding of epigenetic processes. In this review, we discuss current models for the generation of heterochromatic domains at centromeres and telomeres in the two yeast species

    Molecular basis of USP7 inhibition by selective small-molecule inhibitors

    Get PDF
    Ubiquitination controls the stability of most cellular proteins, and its deregulation contributes to human diseases including cancer. Deubiquitinases remove ubiquitin from proteins, and their inhibition can induce the degradation of selected proteins, potentially including otherwise 'undruggable' targets. For example, the inhibition of ubiquitin-specific protease 7 (USP7) results in the degradation of the oncogenic E3 ligase MDM2, and leads to re-activation of the tumour suppressor p53 in various cancers. Here we report that two compounds, FT671 and FT827, inhibit USP7 with high affinity and specificity in vitro and within human cells. Co-crystal structures reveal that both compounds target a dynamic pocket near the catalytic centre of the auto-inhibited apo form of USP7, which differs from other USP deubiquitinases. Consistent with USP7 target engagement in cells, FT671 destabilizes USP7 substrates including MDM2, increases levels of p53, and results in the transcription of p53 target genes, induction of the tumour suppressor p21, and inhibition of tumour growth in mice
    corecore