428 research outputs found

    Mirror Position Determination for the Alignment of Cherenkov Telescopes

    Full text link
    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures to map the faint Cherenkov light emitted in extensive air showers onto their image sensors. Segmented reflectors fulfill these needs using mass produced and light weight mirror facets. However, as the overall image is the sum of the individual mirror facet images, alignment is important. Here we present a method to determine the mirror facet positions on a segmented reflector in a very direct way. Our method reconstructs the mirror facet positions from photographs and a laser distance meter measurement which goes from the center of the image sensor plane to the center of each mirror facet. We use our method to both align the mirror facet positions and to feed the measured positions into our IACT simulation. We demonstrate our implementation on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and implementation demonstratio

    A High Docosahexaenoic Acid Diet Alters the Lung Inflammatory Response to Acute Dust Exposure

    Get PDF
    Agricultural workers are at risk for the development of acute and chronic lung diseases due to their exposure to organic agricultural dusts. A diet intervention using the omega-3 fatty acid docosahexaenoic acid (DHA) has been shown to be an effective therapeutic approach for alleviating a dust-induced inflammatory response. We thus hypothesized a high-DHA diet would alter the dust-induced inflammatory response through the increased production of specialized pro-resolving mediators (SPMs). Mice were pre-treated with a DHA-rich diet 4 weeks before being intranasally challenged with a single dose of an extract made from dust collected from a concentrated swine feeding operation (HDE). This omega-3-fatty-acid-rich diet led to reduced arachidonic acid levels in the blood, enhanced macrophage recruitment, and increased the production of the DHA-derived SPM Resolvin D1 (RvD1) in the lung following HDE exposure. An assessment of transcript-level changes in the immune response demonstrated significant differences in immune pathway activation and alterations of numerous macrophage-associated genes among HDE-challenged mice fed a high DHA diet. Our data indicate that consuming a DHA-rich diet leads to the enhanced production of SPMs during an acute inflammatory challenge to dust, supporting a role for dietary DHA supplementation as a potential therapeutic strategy for reducing dust-induced lung inflammation

    The Genomic Signature of Crop-Wild Introgression in Maize

    Get PDF
    The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes were particularly resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly informing our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies

    FACT - Highlights from more than Five Years of Unbiased Monitoring at TeV Energies

    Get PDF
    The First G-APD Cherenkov Telescope (FACT) is monitoring blazars at TeV energies. Thanks to the observing strategy, the automatic operation and the usage of solid state photosensors (SiPM, aka G-APDs), the duty cycle of the instrument has been maximized and the observational gaps minimized. This provides a unprecedented, unbiased data sample of almost 9000~hours of data of which 2375 hours were taken in 2016. An automatic quick look analysis provides results with low latency on a public website. More than 40 alerts have been sent in the last three years based on this. To study the origin of the very high energy emission from blazars simultaneous multi-wavelength and multi-messenger observations are crucial to draw conclusions on the underlying emission mechanisms, e.g. to distinguish between leptonic and hadronic models. FACT not only participates in multi-wavelength studies, correlation studies with other instruments and multi-messenger studies, but also collects time-resolved spectral energy distributions using a target-of-opportunity program with X-ray satellites. At TeV energies, FACT provides an unprecedented, unbiased data sample. Using up to 1850 hours per source, the duty cycle of the sources and the characteristics of flares at TeV energies are studied. In the presentation, the highlights from more than five years of monitoring will be summarized including several flaring activities of Mrk 421, Mrk 501 and 1ES 1959+650.D. Dorner, J. Adam, M.L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, a, K. Bruegge, M. Bulinski, J. Buss, A. Dmytriiev, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, a, K. Mannheim, S.A. Mueller, D. Neise, A. Neronov, M. Noethe, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walte

    Measuring the optical point spread function of FACT using the Cherenkov camera

    Get PDF
    FACT, the First G-APD Cherenkov Telescope, is an Imaging Air Cherenkov Telescope (IACT) operating since 2011 at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. As typical for IACTs, its reflector is comprised of smaller mirror facets and not protected by a dome. In the case of FACT, 30 hexagonal facets form a total mirror area of 9:5m². Hence, it is crucial to monitor the optical properties of this system and realign the facets if necessary. Up to now, measuring the Point Spread Function of FACT required human interaction to mount a screen and an optical camera. In this contribution, a new method to measure the optical Point Spread Function using directly the Cherenkov camera of the telescope is presented. Inspired by the method radio telescopes use to determine their resolution, the telescope is pointed towards a fixed position on the trajectory of a star. During the star’s passage through the field of view, the camera is read out using a fixed rate. In each event, the pedestal variance is determined for each pixel. This value is directly correlated with the amount of night sky background light a pixel received. Translating the time of the measurement to the position of the star in the camera enables to determine the optical point spread function from this measurement. As the measurement is done for each pixel along the trajectory of the star, the Point Spread Function can be determined not only for the camera center but for the entire field of view. In this contribution, the new method will also be compared with the existing methods of determining the optical Point Spread Function: direct measurement with an optical camera and the width of Muon ring events.M. Noethe, J. Adam, M. L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, K. Bruegge, J. Buss, A. Dmytriiev, D. Dorner, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, K. Mannheim, S. A. Mueller, D. Neise, A. Neronov, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walte

    FACT - Time-resolved blazar SEDs

    Get PDF
    Blazars are highly variable objects and their spectral energy distribution (SED) features two peaks. The emission at low energies is understood, however, the origin of the emission at TeV energies is strongly debated. While snapshots of SEDs usually can be explained with simple models, the evolution of SEDs challenges many models and allows for conclusions on the emission mechanisms. Leptonic models expect a correlation between the two peaks, while hadronic models can accommodate more complex correlations. To study time-resolved SEDs, we set up a target-of-opportunity program triggering high-resolution X-ray observations based on the monitoring at TeV energies by the First G-APD Cherenkov Telescope (FACT). To search for time lags and identify orphan flares, this is accompanied by X-ray monitoring with the Swift satellite. These observations provide an excellent multi-wavelength (MWL) data sample showing the temporal behaviour of the blazar emission along the electromagnetic spectrum. To constrain the origin of the TeV emission, we extract the temporal evolution of the low energy peak from Swift data and calculate the expected flux at TeV energies using a theoretical model. Comparing this to the flux measured by FACT, we want to conclude on the underlying physics. Results from more than five years of monitoring will be discussed.D. Dorner, J. Adam, M.L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, a, K. Bruegge, M. Bulinski, J. Buss, A. Dmytriiev, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, a, K. Mannheim, S.A. Mueller, D. Neise, A. Neronov, M. Noethe, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walter, FACT Collaboration, A. Kreikenbohm, K. Leite

    FACT - Performance of the first cherenkov telescope observing with SiPMs

    Get PDF
    The First G-APD Cherenkov Telescope (FACT) is pioneering the usage of silicon photo multipliers (SIPMs also known as G-APDs) for the imaging atmospheric Cherenkov technique. It is located at the Observatorio Roque de los Muchachos on the Canary island of La Palma. Since first light in October 2011, it is monitoring bright TeV blazars in the northern sky. By now, FACT is the only imaging atmospheric Cherenkov telescope operating with SIPMs on a nightly basis. Over the course of the last five years, FACT has been demonstrating their reliability and excellent performance. Moreover, their robustness allowed for an increase of the duty cycle including nights with strong moon light without the need for UV-filters. In this contribution, we will present the performance of the first Cherenkov telescope using solid state photo sensors, which was determined in analysis of data from Crab Nebula, the so called standard candle in gamma-ray astronomy. The presented analysis chain utilizes modern data mining methods and unfolding techniques to obtain the energy spectrum of this source. The characteristical results of such an analysis will be reported providing, e.g., the angular and energy resolution of FACT, as well as, the energy spectrum of the Crab Nebula. Furthermore, these results are discussed in the context of the performance of coexisting Cherenkov telescopes.M. Noethe, J. Adam, M.L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, K. Bruegge, J. Buss, A. Dmytriiev, D. Dorner, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, K. Mannheim, S. Mueller, D. Neise, A. Neronov, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walte

    Single photon extraction for FACT's SiPMs allows for novel IACT event representation

    Get PDF
    Imaging Atmospheric Cherenkov Telescopes provide large gamma-ray collection areas > 104 m2 and successfully probe the high energetic gamma-ray sky by observing extensive air-showers during the night. The First G-APD Cherenkov Telescope (FACT) explores silicon based photoelectric converters (called G-APDs or SiPMs) which provide more observation time with strong moonlight, a more stable photon gain over years of observations, and mechanically simpler imaging cameras. So far, the signal extraction methods used for FACT originate from sensors with no intrinsic quantized responses like photomultiplier tubes. This standard signal extraction is successfully used for the long time monitoring of the gamma-ray flux of bright blazars. However, we now challenge our classic signal extraction and explore single photon extraction methods to take advantage of the highly stable and quantized single photon responses of FACT’s SiPM sensors. Instead of having one main pulse with one arrival time and one photon equivalent extracted for each pixel, we extract the arrival times of all individual photons in a pixel’s time line which opens up a new dimension in time for representing extensive air-showers with an IACT.S. A. Mueller, J. Adam, M. L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, K. Bruegge, J. Buss, A. Dmytriiev, D. Dorner, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, K. Mannheim, D. Neise, A. Neronov, M. Noethe, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walte

    Maternal high fat diet compromises survival and modulates lung development of offspring, and impairs lung function of dams (female mice)

    Get PDF
    © 2019 The Author(s). Published in Respiratory Research. Background: Epidemiological studies have identified strong relationships between maternal obesity and offspring respiratory dysfunction; however, the causal direction is not known. We tested whether maternal obesity alters respiratory function of offspring in early life. Methods: Female C57Bl/6 J mice were fed a high or low fat diet prior to and during two rounds of mating and resulting pregnancies with offspring lung function assessed at 2 weeks of age. The lung function of dams was measured at 33 weeks of age. Results: A high fat diet caused significant weight gain prior to conception with dams exhibiting elevated fasting glucose, and glucose intolerance. The number of surviving litters was significantly less for dams fed a high fat diet, and surviving offspring weighed more, were longer and had larger lung volumes than those born to dams fed a low fat diet. The larger lung volumes significantly correlated in a linear fashion with body length. Pups born from the second pregnancy had reduced tissue elastance compared to pups born from the first pregnancy, regardless of the dam's diet. As there was reduced offspring survival born to dams fed a high fat diet, the statistical power of lung function measures of offspring was limited. There were signs of increased inflammation in the bronchoalveolar lavage fluid of dams (but not offspring) fed a high fat diet, with more tumour necrosis factor-α, interleukin(IL)-5, IL-33 and leptin detected. Dams that were fed a high fat diet and became pregnant twice had reduced fasting glucose immediately prior to the second mating, and lower levels of IL-33 and leptin in bronchoalveolar lavage fluid. Conclusions: While maternal high fat diet compromised litter survival, it also promoted somatic and lung growth (increased lung volume) in the offspring. Further studies are required to examine downstream effects of this enhanced lung volume on respiratory function in disease settings

    New Hard-TeV Extreme Blazars Detected with the MAGIC Telescopes

    Get PDF
    Extreme high-frequency-peaked BL Lac objects (EHBLs) are blazars that exhibit extremely energetic synchrotron emission. They also feature nonthermal gamma-ray emission whose peak lies in the very high-energy (VHE, E > 100 GeV) range, and in some sources exceeds 1 TeV: this is the case for hard-TeV EHBLs such as 1ES 0229+200. With the aim of increasing the EHBL population, 10 targets were observed with the MAGIC telescopes from 2010 to 2017, for a total of 265 hr of good-quality data. The data were complemented by coordinated Swift observations. The X-ray data analysis confirms that all but two sources are EHBLs. The sources show only a modest variability and a harder-when-brighter behavior, typical for this class of objects. At VHE gamma-rays, three new sources were detected and a hint of a signal was found for another new source. In each case, the intrinsic spectrum is compatible with the hypothesis of a hard-TeV nature of these EHBLs. The broadband spectral energy distributions (SEDs) of all sources are built and modeled in the framework of a single-zone, purely leptonic model. The VHE gamma-ray-detected sources were also interpreted with a spine-layer model and a proton synchrotron model. The three models provide a good description of the SEDs. However, the resulting parameters differ substantially in the three scenarios, in particular the magnetization parameter. This work presents the first mini catalog of VHE gamma-ray and multiwavelength observations of EHBLs
    • …
    corecore