4 research outputs found

    A multifrequency analysis of radio variability of blazars

    Full text link
    We have carried out a multifrequency analysis of the radio variability of blazars, exploiting the data obtained during the extensive monitoring programs carried out at the University of Michigan Radio Astronomy Observatory (UMRAO, at 4.8, 8, and 14.5 GHz) and at the Metsahovi Radio Observatory (22 and 37 GHz). Two different techniques detect, in the Metsahovi light curves, evidences of periodicity at both frequencies for 5 sources (0224+671, 0945+408, 1226+023, 2200+420, and 2251+158). For the last three sources consistent periods are found also at the three UMRAO frequencies and the Scargle (1982) method yields an extremely low false-alarm probability. On the other hand, the 22 and 37 GHz periodicities of 0224+671 and 0945+408 (which were less extensively monitored at Metsahovi and for which we get a significant false-alarm probability) are not confirmed by the UMRAO database, where some indications of ill-defined periods about a factor of two longer are retrieved. We have also investigated the variability index, the structure function, and the distribution of intensity variations of the most extensively monitored sources. We find a statistically significant difference in the distribution of the variability index for BL Lac objects compared to flat-spectrum radio quasars (FSRQs), in the sense that the former objects are more variable. For both populations the variability index steadily increases with increasing frequency. The distribution of intensity variations also broadens with increasing frequency, and approaches a log-normal shape at the highest frequencies. We find that variability enhances by 20-30% the high frequency counts of extragalactic radio-sources at bright flux densities, such as those of the WMAP and Planck surveys.Comment: A&A accepted. 12 pages, 16 figure

    The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons

    Get PDF
    The diversity of neurons in sympathetic ganglia and dorsal root ganglia (DRG) provides intriguing systems for the analysis of neuronal differentiation. Cell surface receptors for the GDNF family ligands (GFLs) glial cell-line-derived neurotrophic factor (GDNF), neurturin and artemin, are expressed in subpopulations of these neurons prompting the question regarding their involvement in neuronal subtype specification. Mutational analysis in mice has demonstrated the requirement for GFL signalling during embryonic development of cholinergic sympathetic neurons as shown by the loss of expression from the cholinergic gene locus in ganglia from mice deficient for ret, the signal transducing subunit of the GFL receptor complex. Analysis in mutant animals and transgenic mice overexpressing GFLs demonstrates an effect on sensitivity to thermal and mechanical stimuli in DRG neurons correlating at least partially with the altered expression of transient receptor potential ion channels and acid-sensitive cation channels. Persistence of targeted cells in mutant ganglia suggests that the alterations are caused by differentiation effects and not by cell loss. Because of the massive effect of GFLs on neurite outgrowth, it remains to be determined whether GFL signalling acts directly on neuronal specification or indirectly via altered target innervation and access to other growth factors. The data show that GFL signalling is required for the specification of subpopulations of sensory and autonomic neurons. In order to comprehend this process fully, the role of individual GFLs, the transduction of the GFL signals, and the interplay of GFL signalling with other regulatory pathways need to be deciphered
    corecore