753 research outputs found

    Microwave-assisted hydrothermal synthesis of carbon monolith via a soft-template method using resorcinol and formaldehyde as carbon precursor and pluronic F127 as template

    Get PDF
    A new microwave-assisted hydrothermal synthesis of carbon monolith is reported in this work. The process uses microwave heating at 100 °C under acidic condition by employing a triblock copolymer F127 as the template, and resorcinol–formaldehyde as the carbon precursor. Scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen sorption measurements, transmission electron microscopy, X-ray studies and thermogravimetic analysis were used to characterize the synthesized material. The carbon monolith is crack-free, mesoporous and has a high surface area of 697 m²/g. The results demonstrate that the microwave-assisted hydrothermal synthesis is a fast and simple approach to obtain carbon monoliths, as it reduces effectively the synthesis time from hours to a few minutes which could be an advantage in the large scale production of the material

    Site-Dilution in quasi one-dimensional antiferromagnet Sr2(Cu1-xPdx)O3: reduction of Neel Temperature and spatial distribution of ordered moment sizes

    Full text link
    We investigate the Neel temperature of Sr2CuO3 as a function of the site dilution at the Cu (S=1/2) sites with Pd (S=0), utilizing the muon spin relaxation (muSR) technique. The Neel temperature, which is Tn=5.4K for the undoped system, becomes significantly reduced for less than one percent of doping Pd, giving a support for the previous proposal for the good one-dimensionality. The Pd concentration dependence of the Neel temperature is compared with a recent theoretical study (S. Eggert, I. Affleck and M.D.P. Horton, Phys. Rev. Lett. 89, 47202 (2002)) of weakly coupled one-dimensional antiferromagnetic chains of S=1/2 spins, and a quantitative agreement is found. The inhomogeneity of the ordered moment sizes is characterized by the muSR time spectra. We propose a model that the ordered moment size recovers away from the dopant S=0 sites with a recovery length of \xi = 150-200 sites. The origin of the finite recovery length \xi for the gapless S=1/2 antiferromagnetic chain is compared to the estimate based on the effective staggered magnetic field from the neighboring chains.Comment: 10 pages, 9 figures, submitted to PR

    Muon Spin Relaxation and Susceptibility Studies of Pure and Doped Spin 1/2 Kagom\'{e}-like system (Cux_xZn1x_{1-x})3_{3}V2_{2}O7_7(OH)2_{2} 2H2_2O

    Full text link
    Muon spin relaxation (μ\muSR) and magnetic susceptibility measurements have been performed on the pure and diluted spin 1/2 kagom\'{e} system (Cux_xZn1x_{1-x})3_{3}V2_{2}O7_7(OH)2_{2} 2H2_2O. In the pure x=1x=1 system we found a slowing down of Cu spin fluctuations with decreasing temperature towards T1T \sim 1 K, followed by slow and nearly temperature-independent spin fluctuations persisting down to TT = 50 mK, indicative of quantum fluctuations. No indication of static spin freezing was detected in either of the pure (xx=1.0) or diluted samples. The observed magnitude of fluctuating fields indicates that the slow spin fluctuations represent an intrinsic property of kagom\'e network rather than impurity spins.Comment: 4 pges, 4 color figures, Phys. Rev. Lett. in pres

    Superconductivity and Field-Induced Magnetism in Pr2x_{2-x}Cex_xCuO4_4 Single Crystals

    Full text link
    We report muon-spin rotation/relaxation (muSR) measurements on single crystals of the electron-doped high-T_c superconductor Pr2x_{2-x}Cex_xCuO4_4. In zero external magnetic field, superconductivity is found to coexist with Cu spins that are static on the muSR time scale. In an applied field, we observe a Knight shift that is primarily due to the magnetic moment induced on the Pr ions. Below the superconducting transition temperature T_c, an additional source of static magnetic order appears throughout the sample. This finding is consistent with antiferromagnetic ordering of the Cu spins in the presence of vortices. We also find that the temperature dependence of the in-plane magnetic penetration depth in the vortex state resembles that of the hole-doped cuprates at temperatures above ~ 0.2 T_c.Comment: 4 pages, 5 figure

    Enhancing the Electrocatalytic Activity of Redox Stable Perovskite Fuel Electrodes in Solid Oxide Cells by Atomic Layer-Deposited Pt Nanoparticles

    Get PDF
    The carbon dioxide and steam co-electrolysis in solid oxide cells offers an efficient way to store the intermittent renewable electricity in the form of syngas (CO + H2), which constitutes a key intermediate for the chemical industry. The co-electrolysis process, however, is challenging in terms of materials selection. The cell composites, and particularly the fuel electrode, are required to exhibit adequate stability in redox environments and coking that rules out the conventional Ni cermets. La0.75Sr0.25Cr0.5Mn0.5O3 (LSCrM) perovskite oxides represent a promising alternative solution, but with electrocatalytic activity inferior to the conventional Ni-based cermets. Here, we report on how the electrochemical properties of a state-of-the-art LSCrM electrode can be significantly enhanced by introducing uniformly distributed Pt nanoparticles (18 nm) on its surface via the atomic layer deposition (ALD). At 850 °C, Pt nanoparticle deposition resulted in a ∼62% increase of the syngas production rate during electrolysis mode (at 1.5 V), whereas the power output was improved by ∼84% at fuel cell mode. Our results exemplify how the powerful ALD approach can be employed to uniformly disperse small amounts (∼50 μg·cm–2) of highly active metals to boost the limited electrocatalytic properties of redox stable perovskite fuel electrodes with efficient material utilization.</p
    corecore