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Abstract
Communicating a pension product well is as important as optimising the financial value. In a recent
study, we showed that up to 80% of the value of a pension lump sum could be lost if customer
communication failed. In this paper, we extend the simple customer interaction of the earlier con-
tribution to the more challenging lifetime annuity case. Using a simple mobile phone device, the
pension customer can select the life-long optimal investment strategy within minutes. The financial
risk trade-off is presented as a trade-off between the pension paid and the number of years the life-
long annuity is guaranteed. The pension payment decreases when investment security increases. The
necessary underlying mathematical financial hedging theory is included in the study.
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1. Introduction

It has long been a hen-and-the-egg question in modern pension product development to decide where
to start alleviating the many problems with opaque products that most people fail to understand.
Many pension savers end up receiving suboptimal pension products that might be optimal for other
people. An obvious reason for this is the poor communication. Pension communication has been
notoriously difficult due to opaque products and cases with contradicting interests between pension
providers and pension receivers. Also, financial advice is expensive and becomes even more so if it is
based on opaque products with contradicting interests. An extreme solution to this financial advice
question is to give all customers the same one-size-fits-all product. Another extreme is to let the
pension saver make all the important investment decisions, even when he is not educated enough to
carry out such a difficult financial optimisation.

This paper provides a simple intuitive framework that most pension savers would be able to under-
stand.Within a fewminutes, the pension saver should be able to select the optimal investment strategy
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based on individual preferences of financial risk. Our main point is that, during this task, it is not
necessary or relevant to know about the complicated underlying financial mathematical hedging. We
suggest solving the financial communication problem of the risk of life-long pension annuities by
changing the way that pension products are constructed, so that there is a one-to-one fit between the
simple communication and the complicated underlying financial hedging. We believe we offer a
genuine solution to the pension crisis challenge articulated byMerton (2014).We are not aware of any
other solution enabling the pension saver to design the entire investment guarantee within a few
minutes via a simple question that the pension saver can understand.Many alternative pension designs
might be possible in future developments with the same set of positive features. Therefore, the reader
should not dwell too long on our particular design, but on the fact that pension annuity products can
be constructed in a way that pension savers can make informed decisions. Our specific solution
incorporates many of the suggested pension principles in Merton (2014), shaped in a format that is
simple to implement. Our approach builds on the recent research by Gerrard et al. (2017, 2018) and
Donnelly et al. (2018) where similar tools and investment strategies are provided for the simple lump
sum case. Gerrard et al. (2017, 2018) provide an example of a risk-averse investor who could lose up to
80% of his savings, calculated in certainty equivalents, if mistaken for a riskier investor. This paper
introduces an approach where the pension saver picks his own risk appetite in a simple way that also
exactly back-calculates the pension saver’s optimal investment strategy. A major difference from the
existing pension offers is that the pension saver picks the pension product directly without translation.
The pension saver’s decision has a one-to-one relationship with the financial investment strategy.Most
existing pension products would let the pension saver decide whether he is, for example, of high,
medium or low risk. The financial institution then translates the pension saver’s message into an
investment strategy, but the pension saver’s real interests might be lost in such a translation. Our
pension design provides the pension saver with the exact investment strategy he asks for. In addition,
the pension saver might change his investment strategy: the financial question can be posed again at
any given time, perhaps on a yearly basis, and the pension savermight then either adhere to the original
or update the strategy based on his risk preferences at that time.

The rest of the paper is organised as follows. In section 2, we explain how the communication of the
simple lump sum can be generalised to the more complicated life-long annuity case, without com-
promising on the simplicity of financial advice, by diving into individual customer Emma’s per-
spective. Section 3 highlights the differences from the classical defined contribution (DC) scheme.
Section 4 discusses various details of the pension product. Section 5 presents the stochastic model.
Section 6 and the Appendices provide all the mathematical details of the pension product.

2. The Pension Product from Customers’ Perspective

Emma is 35 years old and wants to invest £300,000 received from an inheritance. The investment
should cover a real annuity income after her retirement at age 65. The actuaries need to handle the
underlying mortality, inflation and investment risk. We require a product that can be presented in a
way that allows her to select her optimal strategy in consistency with her financial risk preferences.
Our solution is communicated to her in the following simple way:

∙ What is your age, when do you want to retire and what is the amount you want to invest? (See also
Figure 1.)

∙ Now, use the slider below to choose the number of years for which you want to have a monthly
pension benefit guaranteed.

R. Gerrard et al.

2

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S135732171800020X
Downloaded from https://www.cambridge.org/core. IP address: 138.40.67.229, on 08 Feb 2019 at 13:07:57, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S135732171800020X
https://www.cambridge.org/core


∙ Half of the time your income will continue life long at a fixed high level. The other half of the time,
it will continue life long at some level between the targeted high level and zero pension.

Figure 2a shows the slider Emma can use in order to see the trade-off between the length of guarantee
and monthly benefit size. All amounts are in real terms, i.e. in today’s values, subject to future
increases with inflation. This facilitates communication as the amount can be compared with today’s
purchasing power. Emma can choose between no guarantee, mimicking a classical financial product
or a life-long guarantee, mimicking a deferred annuity and hence no exposure to risk. The accom-
panying percentage states the chance of ending up with the worst-case scenario of hitting rock
bottom zero pension once the guaranteed pension income period is over.

Imagine that Emma chooses a guarantee period of 10 years providing her a monthly real income of
£2,453 until at least the age of 75. If investments go well, with a 50% chance, the monthly payments
of £2,453 will continue life long. However, there is also the worst-case scenario, with a probability of
22%, that Emma’s pension income will run out when she reaches 75 years of age. In the remaining
28% case, Emma’s life-long annuity will continue with payouts lower than the targeted £2,453. One
could imagine that Emma would safeguard herself to minimise the consequences of such an
unfortunate investment performance. She could, for example, incorporate the value of her house
when reaching 75 years of age, or buy a second product, perhaps a smaller annuity starting when she
is 75 – but then with a life-long guarantee. The annuity option in this paper could be considered as a
building block in a more diverse financial planning of the particular household economy Emma
faces. It is beyond the scope of this research to illustrate how a wide array of annuities could provide
a flexible financial tool for individual households’ financial planning.

In Figure 2b, we see the trade-off between length of guarantee and monthly benefit Emma faces. Note
that if Emma did not want any guarantee, her most likely pension outcome would exceed £3,000 a
year. Alternatively, if Emma wanted absolute lifetime certainty, the guaranteed income would be
below £1,500. Emma can gain a lot by taking the risk of not buying a guarantee, and such should be
made clear to her via the graph provided. Emma can also discover that by increasing the age at which
pay-outs start in Figure 1, a life-long annuity becomes substantially cheaper.

Figure 1. The customer prespecifies some points for the pension product. The age is used to
determine the mortality rate.

Self-selection and risk sharing in a modern world of life-long annuities
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3. Comparison with Traditional-DC Scheme

In this section, we compare the proposed pension product to a typical DC scheme where at retire-
ment the lump sum is converted to an annuity.

3.1. Guaranteed Income

In the DC scheme, the pensioner is exposed to (a) risk from the financial market, i.e. investment
performance in nominal terms, (b) inflation risk, i.e. uncertain development of average living cost
and (c) mortality risk, i.e. fluctuations of the annuity price at retirement. These three risks make the
final pension hard to predict. Financial planning is, therefore, a challenge for most pension savers
holding traditional DC schemes. Our proposed pension product has a clearly stated minimum
monthly income, expressed in real terms, aiding the financial planning.

3.2. Performance

We highlight two areas where our suggested pension product seems to outperform the classical DC
scheme. First, in DC schemes, risky investments cease at retirement, whereas in our product
investments stop at the end of the guarantee period. Those extra years of investment provide our
pension saver with either a higher average return or a lower risk. This is because our pension saver

Figure 2. The top figure shows how the customer can choose the length of guarantee via a slider.
This then determines the size of the monthly benefit and the probability of a zero pension after
the guarantee period. The bottom figure shows the trade-off between guarantee and monthly
benefit. In our example, Emma chose a guarantee of 10 years that yielded a monthly real income
of £2,453 after retirement.

R. Gerrard et al.
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has more years to diversify the financial investment risk. Second, in our proposed life annuity
product, the pension saver receives additional returns equal to the mortality rate. The full trans-
parency of our pooled mortality provides our pension saver with a significant extra life-long return.
In a DC scheme, the added mortality return is opaque and hidden, hence it is expected to be on the
lower side. Both features of our product are expected to result in a significantly higher final pension,
which is the direct financial benefit. More importantly, there is also an indirect benefit stemming
from the fact that our pension saver is more likely to pick the financial risk profile sought, see next.

3.3. Communication

In a classical DC scheme, it is necessary to determine the risk preferences of the pension saver. This is
usually done indirectly by means of a procedure that is unrelated with the actual pension, raising the
chance of miscommunication and investment in assets that do not fit the actual needs. In our
proposed product, the pension saver can directly pick the level of risk sought. He can directly see the
trade-off between guarantee and monthly benefit and can pick anything between a no-guarantee
product with highest monthly pay-out and a deferred annuity which bears no risk but at the same
time gives minimal monthly income. He can also buy more than one product, for example a deferred
annuity that starts paying out at age 85 as well as a 20-year guarantee starting at 65. Finally, the
choice can be changed at any time by either taking (parts) of the money out or changing the
guarantee period.

4. Additional Details

4.1. The Customer Reveals His Risk Appetite

In the above example, Emma revealed her risk appetite in much the same way as proposed for the
lump sum case in Gerrard et al. (2017, 2018). By specifying the required guarantee length, Emma
directly specifies her financial risk appetite. A subsequent simple back-calculation provides us with
Emma’s optimal investment strategy. We are in the fortunate situation that the single most important
financial risk question Emma faces is one that she understands, is directly linked to her pension, and
she can give an immediate answer to: she wants 10 years of guarantee. Perhaps, this is due to
children finishing education by then, and her willingness to sell her house when she is 75 renting a
smaller apartment instead. Selling the house would only be necessary if investment income turned
out to be too disadvantageous. This is rather unlikely and Emma may maintain her current lifestyle
without having to withdraw further from her assets including her house. From a regulatory per-
spective, the pension provider selling the annuity has a full record, for future control purposes, of the
financial communication: Emma answered the simple question posed to her with a 10-year period of
guarantee ending at the age of 75. The one-to-one fit between communication and pension product
drastically reduces the burden of recording the financial advice.

4.2. Annuity Principle

The pension system introduced in this paper uses the annuity overlay fund introduced in Bräutigam
et al. (2017) and motivated by Donnelly et al. (2013, 2014) and Stamos (2008). As the authors point
out, while the pooled annuity overlay fund includes the word annuity, the concept is quite distinct
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from that of a standard life annuity. The main difference is that longevity risk is not transferred to an
insurer, but is shared, instead, among the members of the pension fund. The result is an annuity that
is transparent in its costs and is actuarially fair.

Whenever an individual in the pension fund dies, his wealth is distributed to the survivors in an
actuarially fair way, i.e. at every instant the expected gain (gain when someone else dies less loss of
wealth if own death occurs) is zero. Given that the pool is large enough (e.g. 1,000, refer to Donnelly
et al., 2013, 2014 for how surprisingly small these annuity pools need to be), the mortality gains are
given by

λiðtÞXiðtÞdt;
where Xi is the wealth of individual i and λi(t) the individual’s force of mortality. The relative annuity
gains with magnitude λi(t) coincide with the growth rate of a fairly priced life-long standard annuity,
hence longevity risk is automatically hedged. If Emma reaches the optimal investment scenario,
which happens most of the times, the payouts will continue life long.

4.3. The Overall Principle of Hedging and the Importance of Technical
simplicity

The most important feature of our new class of pension products is the straightforward commu-
nication. Another obvious advantage is its simple technical implementation that will help minimising
technical errors from actuarial and financial offices. The simplicity will ensure that actuaries and
financial experts are on top of things so that a one-to-one fit is achieved between what actuaries and
financial experts tell other departments and the board of directors and what these interested agents
actually get. The hedging strategy can be expressed in terms of a simple probability that actuaries
immediately understand. The optimal investment strategy before introducing risk sharing is given by
investing the amount

300; 000ert +
Ð t

0
λiðsÞds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

value of 300; 000 at t

P 0≤ X�
i ðTiÞ +Pið0Þ�300; 000 μ�rð ÞTi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

terminalwealth of unconstrained strategy corrected by drift

≤GUiðTiÞ j X�
i ðtÞ

0BBB@
1CCCA

in the risky fund, where μ is the average mean return on the risky asset, r the average inflation per
year, t the time passed since commencement, Ti the time from commencement until the end of the
guarantee period, λi the force of mortality of individual i, X�

i the wealth of individual i following an
optimal unconstrained strategy, Pið0Þ the initial price of the hedge, and GUiðTiÞ the actuarially fair
price at Ti for a life-long annuity; refer to section 6 for further details.

4.4. How Risk is Pooled

In what follows, our pension saver can invest only in an inflation fund or a risky fund. We assume
that both have some risk that has to be taken into account in the financial hedge of the underlying
long-term target. In Gerrard et al. (2017, 2018), it is assumed that a risk-free inflation fund exists at
any given time. Here, we relax this assumption and allow some risk involved when hedging inflation.
Most of the time this is not a concern as pension savers can adjust their investments and maintain the
same level of risk as if the inflation fund were risk-free (see section 4.4). However, in some rare cases
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individuals want less risk than the safest option. This can be, for example, the case when 100% in the
inflation fund still bears too much risk. The individuals can then take advantage of being part of a
group. More specifically, the individuals’ lack of risk appetite can be circumvented by transferring
risk to the rest of the group with a risk appetite (see section 4.4). Finally, in extremely rare cases the
entire group loses its aggregate risk appetite, rendering the inflow of investments with risk appetite
necessary. This implies the need for an intermediary whose role is described in section 4.4.

4.4.1. Individual
Once the individual has specified the length of his guarantee period, an optimal financial hedge is
back-calculated. The financial hedge is based on a risk-free inflation fund and a risky fund. It implies
at every point in time a certain risk appetite and an optimal level of inflation hedge. When con-
sidering a risky inflation fund, those levels can be recovered by adjusting the proportions of the
investments. This result is obtained by lowering the level of investment in the risky fund until the risk
appetite from the financial hedge is achieved. This implies a slight increase of the investment in the
risky inflation fund compared to the original investment in the risk-free fund.

4.4.2. Group
In rare cases, the risk appetite of the individual is so small that risk has to be transferred from the
individual to the group. The group, then, chooses, as a solidarity of being part of the group, to
borrow money at the risk-free inflation rate and include it in its investments. This allows our pension
system to work almost frictionless.

4.4.3. Intermediary
In extremely rare cases with insufficient risk appetite in the group to cover the risk in the inflation
fund, an intermediary provides capital with risk appetite. Note that the only promise the inter-
mediary makes is to provide risk capital close to the market value. Therefore, it does not cost much
to participate. Even so, the intermediary is allowed to charge some administration cost for being the
“market maker” to ensure that risk appetite is available at all times and, therefore, ensure the
underlying guarantee.

5. The Stochastic Model Underlying the Financial Hedge

In this section, we present the financial model used for the financial hedging. We choose the simplest
possible such model for the sake of transparency, noting that this research output is not aiming for
optimal financial modelling. While in this paper we are concerned with connecting investment
strategies with annuities and achieving a one-to-one communication to the customer, let us for a
second assume that we change the underlying financial model. The financial hedge is about the target
income and the length of the guarantee. Changing the financial model is expected to only slightly
affect the size of the forecasted target income for given guarantees, however the decision of the
pension saver remains more or less of the same nature; this approach seems robust under underlying
financial model variations. Therefore, we pick the simplest most transparent model comprising a
risk-free inflation fund S0≡1–note that we operate in real terms–and a risky fund S1 described via

dS1ðtÞ= μS1ðtÞdt + σS1ðtÞdWðtÞ; (1)

where μ, σ> 0, S1(0)=1 and W is a standard Brownian motion.

Note that the financial model (1) is simpler than the investment universe provided to the pension
customer consisting of a risky asset and an inflation fund, where also the latter carries some risk. The
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risky inflation fund is expected to be constructed in a way that over the long run at least a return of
inflation is obtained plus an additional return corresponding to the risk taken in the risky inflation
fund. In section 6.5, we will see that a risk transfer can be made from the real investment universe of
a risky inflation fund and a more risky fund to the artificial investment universe of a risk-free
inflation fund and a risky fund. The transfer simply looks at the risk that the financial hedging
strategy suggests and downplays the risky fund a little bit while upgrading the risky inflation fund a
little bit. This is done until the pension customer has the same risk-return profile, as suggested by the
very simple transparent financial model (1) consisting of an infeasible risk-free inflation fund and a
risky asset.

In the example of section 2, we assume

μ= 0:0337; σ = 0:1538;

corresponding to 1-year mean returns and standard deviations of 3.43% and 16% for the risky asset
(see equations (10) and (11)). The 3.43% return and 16% volatility of the risky asset are from
Guillén et al. (2006), based on the empirical results in the book “Triumph of the optimist” (Dimson
et al., 2002). In order to price a pension product, the pension provider requires an estimate of the
mortality rate, λ(t), of the customer. In Figure 1, this is done by asking for customer’s age. In practice,
one may consider more covariates aiming to achieve a better estimate, however such is beyond the
scope of this paper. For illustration purposes, we choose for simplicity the mortality rates from the
National Life Tables, England, for females in the period 2013–2015 Office for National Statistics
(2017). By using this data, we implicitly assume no future period effect on the mortality rates. Again,
adopting a more realistic model is possible, but not the focus of this paper. Other information the
pension provider receives is the amount of money that the customer wants to invest and the time
when payouts should start.

To derive a customer-tailored pension product, it is important to communicate correctly the risk
appetite of the customer. Following Gerrard et al. (2017, 2018), it is possible to describe the risk
appetite with only one parameter that the customer understands. This is in contrast to an abstract
risk aversion parameter of a utility function which is hard to communicate. In Gerrard et al. (2017,
2018), it is shown that, by specifying a minimum amount the pensioner wants to have guaranteed, an
optimal investment strategy can be back-calculated, yielding a practically optimal performance
specific to the customer’s risk appetite. In section 6.3, we extend this result to the annuity case in
which the customer now chooses how long he wants payouts guaranteed. From equation (8), one can
then calculate the corresponding size of monthly payouts, so that there is a 50% chance that these
continue life long after the guarantee period.

Note that the money paid in should be invested as long as possible. In particular, investments should
not stop at retirement, as such would lead to significant losses in expected performance. In our
implementation, we choose the investment to last to the end of the guarantee period. A longer
investment horizon is not directly possible as it is a priori not known how long the money on the
pension account will last. The customer himself is not concerned with these details and only sees
Figure 2, visualising the trade-off between guarantee length and monthly benefit size. Once the
decision is made, the pension provider is left with an investment strategy due to be implemented.

Whenever an investor in the pension fund dies, his wealth is distributed according to formula (4).
The distribution of wealth is actuarially fair, meaning that, given the individual’s mortality rate, the
expected gain at every instant is exactly zero. Note that gains occur if others in the fund die and a
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loss occurs with own death, the full wealth being redistributed. In Proposition 1, we show that in a
large pension pool, payouts from it have little volatility and the extra return from entering the
annuity scheme is very close to the mortality rate, λ(t).

The theoretical optimal investment strategy is derived in a Black–Scholes world, hence needs to be
adjusted to account for model (1). The main idea is that the strategy is adjusted in a way that the
calculated optimal risk exposure from the Black–Scholes world is preserved. This is straightforward
to do as long as all individuals in the pension fund have enough risk appetite for the adjustment to be
feasible, i.e. equation (13) is fulfilled for everyone. If equation (13) is violated for an individual, the
risk-sharing principle kicks in: those with sufficient risk appetite in the pension fund offer those who
lack risk appetite a risk-free inflation return; refer to section 6.5.1 for more details. The result is that
via this risk-sharing principle, everyone maintains the same risk as derived from the Black–
Scholes world.

6. The Full Investment Model Including Mortality Risk

In this section, we incorporate mortality in our financial model. While almost any approach to
mortality risk can be combined with our new pension design, we have particular preference for the
modern risk-sharing approach of Bräutigam et al. (2017) as there are no hidden costs in it to the
customers that cover each other’s risk almost without any long-term cost. But again, what follows
aims to just illustrate that it is possible to provide an easily communicated pension design including
mortality risk. Just as our pension design itself may have several variations with similar positive
properties, the underlying mortality approach used for the annuity may also take different shapes
without compromising on our overall ideas of a simple pension product that is easy to communicate
and where the entire investment strategy can be back-calculated from a short conversation with the
pension saver. As pointed out in section 5, we will start with two assets: a risk-free inflation bond S0
and a risky asset S1. The financial hedging principle is based on this simple model; mortality risk will
be incorporated in section 6.2. The real investment universe the pension customer faces has a risky
inflation fund rather than a risk-free inflation bond. Therefore, there is some risk transfer adjustment
to be done, so that the pension saver can maintain the risk–return relationship that the financial
hedging suggests. This is carried out in section 6.5.

6.1. Two Asset Case: Inflation Fund and Risky Fund

Let us first restate our simple transparent financial model used for financial hedging. There are two
assets: a risk-free inflation bond, S0, and a risky asset S1, described by

dS0ðtÞ= rS0ðtÞdt; dS1ðtÞ= μS1ðtÞdt + σS1ðtÞdWðtÞ; t≥ 0 (2)

where μ, σ, r> 0 and S0(0)= S1(0)=1. The only source of randomness is the standard Brownian
motion, W, defined on a complete probability space ðΩ;F ;PÞ. The information available to the
investor is represented by the filtration F t = σfWðsÞ; s 2 0; t�g _ N ðPÞ, where NðPÞ denotes the
collection of all P-null sets so that the filtration obeys the usual conditions. We denote by Xi(t) the
amount of wealth invested by individual i in the fund at time t, of which πi(t) is invested in the risky
asset and the remaining in the risk-free asset. There is also a deterministic stream of payments into
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the fund defined by dCiðtÞ over the time interval (t,t + dt). Hence,

dXiðtÞ= r XiðtÞ�πiðtÞð Þdt + μdt + σdWðtÞð ÞπiðtÞ + dCiðtÞ
=XiðtÞdt + θdt + dWðtÞð ÞσπiðtÞ + dCiðtÞ; ð3Þ

where θ= (μ − r)/σ is the market price of risk.

6.2. Adding Pooled Mortality Gains

Next, we consider a fixed, deterministic rate of mortality and the risk pooling principle of Bräutigam
et al. (2017), and explain how actuarially fair mortality gains can be incorporated in our pension
system. In this attempt, we make two assumptions:

A1 The mortality rate of the individuals is known, with no extra parameter uncertainty.

A2 The pension fund has an infinite number of individuals.

We denote the mortality rate of individual i by λi(t). Whenever an individual in the pension fund dies,
his remaining wealth is distributed to the survivors in the pension fund. We denote by LðtÞ the index
set of people alive at time t. The wealth is distributed in an actuarially fair way. Assume that
individual j is alive at time t − . If he dies at time t, then the surviving pension saver i≠j receives

λiðtÞXiðtÞ 1 +AiðtÞ½ �P
l2Lðt�Þ

λlðtÞXlðtÞ 1 +AlðtÞ½ �XjðtÞ½1 +AjðtÞ�; (4)

where A is an adjustment factor implicitly defined by equation (A1) which converges to zero with
growing pool size. More precisely, the individual mortality gains at time t, when individual j dies, are
given by

dHiðtÞ=
λiðtÞXiðtÞ 1+AiðtÞ½ �P

l2Lðt�Þ
λlðtÞXlðtÞ 1 +AlðtÞ½ �XiðtÞ 1 +AiðtÞ½ �; if i≠ j

�XiðtÞ; if i= j;

8><>:
where the case i= j is derived as a consequence of the definition of A.

Proposition 1. The expected mortality gain at every instant is given by

E dHiðtÞ j F t� ; i alive at t�½ �= 0;

hence wealth is distributed in an actuarially fair way. In addition, conditional on surviving, the
expected mortality gain is given by

E dHiðtÞ j F t� ; i alive at t½ �= λiðtÞXiðtÞ 1 +AiðtÞ½ �

´ 1� λiðtÞXiðtÞ 1 +AiðtÞ½ �P
l2Lðt�Þ

λlðtÞXlðtÞ 1 +AlðtÞ½ �

0B@
1CAdt;
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and the variance by

Var dHiðtÞ j F t� ; i alive at t½ �= λiðtÞXiðtÞ 1 +AiðtÞ½ �P
l2Lðt�Þ

λlðtÞXlðtÞ 1 +AlðtÞ½ �

0B@
1CA

2

´
X

j2Lðt�Þ n i
X2

j ðtÞ 1 +AjðtÞ
� �2

λjðtÞdt:

Then, with growing pool size, the variance of the actuarial gains converges to zero and the expected
gains, conditional on not dying, to λi(t)Xi(t)dt.

Proof. See Appendix A. ∎

In the following, we assume that the pool size is large enough so that any noise can be ignored. Then,
if the financial model (3) of the previous section is combined with the annuity pool, as long as the
individual is alive the development of wealth is given by

dXiðtÞ= rXiðtÞ + ðμ�rÞπiðtÞ + λiðtÞXiðtÞð Þdt + σπiðtÞdWðtÞ + dCiðtÞ: (5)

This means that when an optimal strategy πi is considered, such should incorporate the additional
gains λi(t)Xi(t)dt.

Proposition 2. Under model (5), the optimal strategy maximising U(Xi(Ti)) for an exponential utility
function, UðxÞ=�γ�1

i e�γix, is given by

π�i ðtÞ=Cie
�rðTi�tÞ�

Ð Ti

t
λiðsÞds;

where Ci= θ/(σγi). Under this strategy, the evolution of the optimal wealth is given by

X�
i ðtÞ= ert +

Ð t
0
λiðsÞds Xið0Þ + gið0Þ½ � + e�rðTi�tÞ�

Ð Ti

t
λiðsÞdsRi θt +WðtÞ½ ��giðtÞ; (6)

where

giðtÞ=
ðTi

t
e�rðs�tÞ�

Ð s

t
λiðuÞdudCiðsÞ

and Ri=Ciσ.

Proof. See Appendix B. ∎

Remark. Following Gerrard et al. (2017, 2018), we assume that γi = θe�rTi�
Ð Ti

0
λiðsÞds = ðσXið0ÞÞ so that

Ci =Xið0ÞerTi +
Ð Ti

0
λiðsÞds.

6.3. From Lump Sum to Annuities

When considering a retirement product, the focus should not be on a lump sum but on the monthly
income level at retirement and the duration of payment. In this section, we extend the lump sum case
to an annuity.

Assume that the pension saver has T0
i years until retirement. Assume that individual i chooses to

have guaranteed payout duration of Di years with payouts of �dCi. Payouts stop, however, at the
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time of death. We set Ti =T0
i +Di. Then, the discounted remaining guaranteed amount of payments

as at t>0 is given by

GLi�ðtÞ=�
ðTi

T0
i _t

e�rðs�tÞNiðsÞdCiðsÞ;

where Ni has value 1 while the individual is alive, otherwise it becomes 0. We also consider the
optimal outcome to be a life-long payout, hence we define the top value based on receipt of payments
until death

GUi�ðtÞ=�
ð1
T0
i _t

e�rðs�tÞNiðsÞdCiðsÞ:

Then, t years from now,

GLiðtÞ : =E½GLi�ðtÞ j F t�=�
ðTi

T0
i _t

e�rðs�tÞ SiðsÞ
SiðtÞ dCiðsÞ;

where SiðaÞ= exp �Ð a0λiðuÞdu� �
is the survival function, i.e. the unconditional probability of

surviving until a certain age, and

GUiðtÞ : =E½GUi�ðtÞ j F t�=�
ð1
T0
i _t

e�rðs�tÞ SiðsÞ
SiðtÞ dCiðsÞ:

Note that

GLiðtÞ=�giðtÞ +
ðT0

i _t

t
e�rðs�tÞ�

Ð s

t
λiðuÞdudCiðsÞ;

GUiðtÞ= e�rðTi�tÞ�
Ð Ti

t
λiðsÞdsGUiðTiÞ�giðtÞ +

ðT0
i _t

t
e�rðs�tÞ�

Ð s
t
λiðuÞdudCiðsÞ:

We can now modify the unconstrained strategy of the previous section. The aim is to guarantee the
payment stream for a period of Di years, while maximising the chance of getting the payouts life
long. Technically, this translates to finding an optimal strategy maximising U(Xi(Ti)), for a given
utility function U, subject to the constraint 0=GLi(Ti)≤Xi(Ti)≤GUi(Ti). Note that the optimal
strategy will then naturally satisfy that, at any given time, the wealth remains always above the price
of an annuity with Di years payout and below a life-long annuity.

Proposition 3. For

GLið0Þ≤Xið0Þ +
ðT0

i _t

t
e�rðs�tÞ�

Ð s

t
λiðuÞdudCiðsÞ≤GUið0Þ;

there exists an optimal strategy yielding wealth X��
i ðtÞ with

X��
i ðTiÞ=

GLiðTiÞ; if X�
i ðTiÞ +Pið0Þ<0

X�
i ðTiÞ +Pið0Þ; if 0≤X�

i ðTiÞ +Pið0Þ≤GUiðTiÞ
GUiðTiÞ; if X�

i ðTiÞ +Pið0Þ>GUiðTiÞ

8>><>>: : (7)

Furthermore, it holds for all t ∈ (0, Ti] that

GLiðtÞ≤X��
i ðtÞ +

ðT0
i _t

t
e�rðs�tÞ�

Ð s
t
λiðuÞdudCiðsÞ≤GUiðtÞ:

R. Gerrard et al.

12

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S135732171800020X
Downloaded from https://www.cambridge.org/core. IP address: 138.40.67.229, on 08 Feb 2019 at 13:07:57, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S135732171800020X
https://www.cambridge.org/core


The corresponding optimal strategy is given by

π��i ðtÞ=Cie
�rðTi�tÞ�

Ð Ti

t
λiðsÞdsP GLiðTiÞ≤X�

i ðTiÞ +Pið0Þ�RiθTi ≤GUiðTiÞ j X�
i ðtÞ

� �
;

where Pið0Þ is defined via

Xið0Þ=GUið0Þ�Xið0Þσ
ffiffiffiffiffi
Ti

p
H

GUið0Þ�Xið0Þ�e�rTi�
Ð Ti

0
λiðsÞdsPið0Þ

Xið0Þσ
ffiffiffiffiffi
Ti

p
0@ 1A24

�H
GLið0Þ�Xið0Þ�e�rTi�

Ð Ti
0
λiðsÞdsPið0Þ

Xið0Þσ
ffiffiffiffiffi
Ti

p
0@ 1A35;

HðxÞ=xΦðxÞ +ϕðxÞ, and Φ and ϕ are, respectively, the standard normal cumulative distribution and
density functions.

Proof. See Appendix C. ∎

6.4. The Probabilities

In this section, we want to find the monthly payment stream dCi corresponding to monthly constant

real income. More specifically, we define CiðtÞ=�P 12t
s= 1Miers =12, t>T0

i and aim to find Mi, i.e. the
monthly income measured in today’s purchasing power, such that

P X��
i ðTD

i Þ> 0 j TD
i >Ti

� �
= 50% ;

where TD
i is the time until death, i.e. given that individual i outlives the guarantee period, there is a

50% chance that the payment stream will continue life long. Assuming independence of the time of
death and the performance of the investments, we have that

P½X��
i ðTD

i Þ> 0 j TD
i >Ti�=

ð1
Ti

fiðtÞ
SiðTiÞP½X

��
i ðtÞ>0�dt

=
ð1
Ti

fiðtÞ
SiðTiÞP X��

i ðTiÞ>�
ðt
Ti

e
�rðs�TiÞ�

Ð s

Ti
λiðuÞdu

dCiðsÞ
� 	

dt

=
ð1
Ti

fiðtÞ
SiðTiÞP X��

i ðTiÞ>MierTi
X12t

s= 12Ti

e
�
Ð s = 12

Ti
λiðuÞdu

" #
dt

where fiðtÞ= λiðtÞ exp �Ð t0λiðsÞds� �
is the mortality density. Define

Pið0Þ= erTi +
Ð Ti

0
λiðsÞds½Xið0Þ + gið0Þ� +Pið0Þ, then, in distribution,

X��
i ðTiÞ= max min Pið0Þ +RiθTi +Ri

ffiffiffiffiffi
Ti

p
Z;GUiðTiÞ

� �
;GLiðTiÞ


 �
;

where Z is a standard normal random variable. Hence,

0:5=
ð1
Ti

fiðtÞ
SiðTiÞΦ

�MierTi
P12t

s=12Ti

e
�
Ð s = 12

Ti
λiðuÞdu +RiθTi +Pið0Þ

Ri
ffiffiffiffiffi
Ti

p

26664
37775dt:
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If CiðtÞ= 0 for t<T0
i , the above can be rewritten to

0:5=
ð1
Ti

fiðtÞ
SiðTiÞΦ

�MierTi
P12t

s= 12T0
i

e
�
Ð s = 12

Ti
λiðuÞdu +RiθTi + e

rTi +
Ð Ti

0
λiðsÞdsXið0Þ +Pið0Þ

Ri
ffiffiffiffiffi
Ti

p

266664
377775dt

=
ð1
Ti

fiðtÞ
SiðTiÞΦ

�Mi
P12t

s=12T0
i

e�
Ð s = 12

0
λiðuÞdu +Xið0Þðμ�rÞTi +Xið0Þ + ePið0Þ

Xið0Þσ
ffiffiffiffiffi
Ti

p

266664
377775dt; ð8Þ

where for the last equality we have used that Ri =Xið0ÞerTi +
Ð Ti

0
λiðsÞdsσ, withePið0Þ= e�rTi�

Ð Ti

0
λiðsÞdsPið0Þ – the cost of the hedge when assuming zero inflation. The last equation

can be solved iteratively for Mi. Note thatMi does not depend on the inflation rate r directly but only
via the excess return μ − r.

6.5. No Risk-Free Asset but an Inflation Fund

We now relax the assumption of a risk-free asset of the previous section. The reason is that nearly
risk-free assets, like bonds, provide a certain nominal return, but a pensioner is more interested in a
return with respect to his purchasing power at retirement. By subtracting the inflation rate from an
investment return, one derives the real return which, however, bears some risk.

Abandoning the original risk-free asset S0, we consider now the two assets

deS0ðtÞ=eμeS0ðtÞdt +eσeS0ðtÞdfWðtÞ; dS1ðtÞ= μS1ðtÞdt + σS1ðtÞdWðtÞ; (9)

where μ; eμ; σ; eσ > 0, eS0ð0Þ= S1ð0Þ= 1 and fW;W
� 

is a standard two-dimensional Brownian motion;
the correlation coefficient of the Brownian motions is ρ∈ [ −1,1].

6.5.1. Adjusting for extra risk in the inflation fund and the risk sharing
principle
To account for the change from the risk-free bond model (2) to the inflation fund (9), we propose an
ad hoc adjustment to the optimal strategy (7).

The mean return, μ1, and risk, σ1, on £1 in S1 are given by

μ1 =E ðS1ð1Þ�S1ð0ÞÞ = S1ð0Þ½ �= eμ�1; (10)

σ1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðS1ð1ÞÞ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeσ2�1Þe2μ

q
: (11)

In the same fashion for the case when £1 is invested solely in eS0, we derive μ0 and σ0 by replacing μ, σ
in equations (10) and (11) with eμ, eσ. For the risk-free case, i.e. when investing in S0 and S1, the yearly
risk for an individual investing π in S1 is πσ1. When we replace the risk-free fund S0 by the inflation
fund eS0, additional risk (and return) needs to be considered. For wealth X and π invested in S1, the
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remaining X − π is invested in eS0 and the yearly risk is given by

π2σ21 + X�πð Þ2σ20 + 2π X�πð Þρσ0σ1
� 1 = 2

:

Hence, the risk of individual i is preserved by investing π with

π2 σ21 + σ
2
0�2ρσ1σ0

� �
+ π �2Xiσ

2
0 + 2Xiρσ1σ0

� �
+X2

i σ
2
0�π��i 2σ21 = 0:

The solution

π =
Xiσ20�Xiρσ1σ0 + ðXiσ20�Xiρσ1σ0Þ2�ðσ21 + σ20�2ρσ1σ0ÞðX2

i σ
2
0�π��2i σ21Þ

h i1 = 2
σ21 + σ

2
0�2ρσ1σ0

(12)

is well-defined for sufficiently large π��i :

π��i ≥Xiσ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2

σ21 + σ
2
0�2ρσ1σ0

s
: (13)

Condition (13) is violated if the individual does not have enough risk appetite, i.e. the optimal
strategy involves less risk than any combination of eS0 and S1 can offer. This leads to the risk sharing
principle. More specifically, we arrange the people in the pension fund into three groups. Individuals
in groups I and J are those with sufficient risk appetite so that equation (13) holds – see later.
Individuals in group K are those with insufficient risk appetite and given the opportunity to invest in
the risk-free asset S0 instead of the risky inflation fund eS0. In turn, the inflation fund eS0 replaces S1 as
the risky fund. By slight abuse of notation, we denote by π���k , for members of group k∈K, the
amount invested in eS0, whereas the remaining is invested in S0. Strategy π���k is adjusted via the risk-
preserving relationship

π��k σ1 = π���k σ0:

Note that a solution π���k 2 0;Xk½ � exists as the members of group K violate condition (13), hence
π��k ≤ σ0Xk = σ1.

For the strategy to be feasible, the fund S0 needs to be created internally in the pension fund. This
means that those in group I and J have to short S0 with the amount required by group K. The
aggregate amount that needs to be borrowed by members of I and J is χ =

P
k2K

Xk�π���k . The
maximum amount individual i∈ (I∪ J) is willing to borrow is

ξi =
π��i

σ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ρ2

σ21 + σ
2
0�2ρσ1σ0

q �Xi:

The members of group J do not have enough risk appetite for a full support. The subgroups of J are
defined iteratively, starting with

J1 = j 2 K{ : ξj <
π��jP

l2K{
π��l

χ

8><>:
9>=>; � J:

If J1 is empty, the iteration terminates. Otherwise by the mth iteration, the subgroup Jm⊂J is created:

Jm = j 2 ðK∪ J1 � � � ∪ Jm�1Þ{ : ξj <
π��jP

l2ðK∪ J1���∪ Jm�1Þ{
π��l

χ�
X

l2ðK∪ J1 ���∪ Jm�1Þ
ξl

0@ 1A
8>><>>:

9>>=>>;:
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The iteration stops once an empty set is created. We then define J= ∪ lJl. All remaining members of
the pension fund are allocated to group I= ðJ ∪KÞ{. The final strategies for members of I and J are as

follows: π���l in S1, − ql in S0 and the remaining in eS0; ql= ξl for members of J, whereas

ql = π��l =
P
i2I

π��i

� �
χ� P

l2ðK∪ JÞ
ξl

 !
for members of I. Finally, π���l satisfies (12) when Xl is replaced

by Xl + ql.
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Appendix A. Proof of Proposition 1

The death of an individual is modelled by a counting process Ni(s) with value 1 indicating that the
individual is alive. By definition, the counting process has intensity

lim
h#0

h�1E Ni ðt + hÞ�
� ��Niðt�Þ j F t�

� �
= λiðtÞ1fi alive at t�g:

Hence,

HiðtÞ=�
X
j

ðt
0

λiðsÞXiðsÞ 1 +AiðsÞ½ �Niðs�ÞP
l
λlðsÞXlðsÞ 1 +AlðsÞ½ �Nlðs�Þ

XjðsÞ 1 +AjðsÞ
� �

dNjðsÞ

+
ðt
0
XiðsÞ 1 +AiðsÞ½ �dNiðsÞ;

where Aj satisfies

AjðtÞ=
λjðtÞXjðtÞ 1 +AjðtÞ

� �P
lλlðtÞXlðtÞNlðt�Þ 1 +AlðtÞ½ ��λjðtÞXjðtÞNjðt�Þ ; (A1)

which can be solved iteratively. Feasibility of this strategy is ensured as
P
i
HiðtÞ= 0. Furthermore, if

individual j dies at time t,

dHjðtÞ= λjðtÞXjðtÞ½1 +AjðtÞ�P
l
λlðtÞXlðtÞ 1 +AlðtÞ½ �Nlðt�Þ

XjðtÞ½1 +AjðtÞ��XjðtÞ½1 +AjðtÞ�=�Xj;

where the last equality follows from equation (A1). The expected growth of the gains dHi at time t
given that i is alive at t − is given by

E dHiðtÞ j F t� ;Niðt�Þ= 1½ �=
λiðtÞXiðtÞ 1 +AiðtÞ½ � P

j2Lðt�Þ
λjðtÞXjðtÞ 1 +AjðtÞ

� �
dtP

l2Lðt�Þ
λlðtÞXlðtÞ 1 +AlðtÞ½ �

�λiðtÞXiðtÞ 1 +AiðtÞ½ �dt
= 0;

hence the mortality pooling is actuarially fair at any time. Similarly,

E dHiðtÞ j F t� ;NiðtÞ= 1½ �=
λiðtÞXiðtÞ 1 +AiðtÞ½ � P

j2Lðt�Þ n i
λjðtÞXjðtÞ 1 +AjðtÞ

� �
dtP

l2Lðt�Þ
λlðtÞXlðtÞ 1 +AlðtÞ½ �

= λiðtÞXiðtÞ 1 +AiðtÞ½ � 1� λiðtÞXiðtÞ 1 +AiðtÞ½ �P
l2Lðt�Þ

λlðtÞXlðtÞ 1 +AlðtÞ½ �

0B@
1CAdt:
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For the variance we have

Var dHiðtÞ j F t� ;NiðtÞ= 1½ �= λiðtÞXiðtÞ 1 +AiðtÞ½ �P
l2Lðt�Þ

λlðtÞXlðtÞ 1 +AlðtÞ½ �

0B@
1CA

2

´
X
j

Var½XjðtÞ 1 +AjðtÞ
� �

dNiðtÞ j F t� ;NiðtÞ=1�

=
λiðtÞXiðtÞ 1 +AiðtÞ½ �P

l2Lðt�Þ
λlðtÞXlðtÞ 1 +AlðtÞ½ �

0B@
1CA

2

´
X

j2Lðt�Þ n i
X2

j ðtÞ 1 +AjðtÞ
� �2

λjðtÞdt:

Appendix B. Proof of Proposition 2

For notational convenience, in what follows subscript i is suppressed. Define the discounted wealth
process

YðtÞ= erðT�tÞ +
Ð T

t
λðsÞds XðtÞ + gðtÞð Þ: (B1)

As Y(T)=X(T), maximising E[U(X(T))] amounts to maximising E[U(Y(T))]. Furthermore,

dYðtÞ= ðμ�rÞerðT�tÞ +
Ð T

t
λðsÞdsπðtÞdt + σerðT�tÞ +

Ð T
t
λðsÞdsπðtÞdWðtÞ: (B2)

Based on standard optimal control theory, the optimal value function at time t is given by

Vðt; yÞ= sup
π

E½UðYðTÞÞ j YðtÞ= y; strategy π is used�:

The Hamilton Jacobi Bellman equation describing the dynamics of V is given by

sup
π

Vt + θσe
rðT�tÞ +

Ð T

t
λðsÞdsπðtÞVy +

1
2
σ2π2ðtÞe2rðT�tÞ +2

Ð T

t
λðsÞdsVyy

� �
= 0;

where Vt, Vy and Vyy are the partial derivatives with respect to t and y (first and second order). By
utilising the first-order condition in the optimisation problem above, the optimal value of π is

π�ðt; yÞ=� θ

σ
e�rðT�tÞ�

Ð T
t
λðsÞds Vy

Vyy
;

hence V satisfies

Vt� θ2

2

V2
y

Vyy
=0:

Subject to the boundary condition

VðT; yÞ=� 1
γ
e�γy;
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it is straightforward to show that

Vðt; yÞ=� 1
γ
exp � θ2

2
ðT�tÞ�γy

� �
;

yielding the optimal strategy

π�ðt; yÞ=Ce�rðT�tÞ�
Ð T

t
λðsÞds

and

Y�ðtÞ= y0 +Cσ θt +WðtÞð Þ: (B3)

From equations (B1) and (B3), we then get the optimal wealth equation (6).

Appendix C. Proof of Proposition 3

Lemma. Wealth X** described in equation (7) is feasible.

Proof. Define the process

PðtÞ=X�ðtÞ +Pð0Þ;
where X*(t) satisfies equation (6). Further, define the martingale measureQ such thatWℚ(t)=W(t) + θt
is a standard Brownian motion. Hence,

PðtÞ=Pð0Þ +RWQðtÞ:
Conditional on the history of the process up until time t> 0,

PðTÞ=Pð0Þ +RðWQðtÞ +
ffiffiffiffiffiffiffiffiffi
T�t

p
ZÞ;

where Z is a standard normal random variable under Q. We note that

PðTÞ>GUðTÞ , WQðtÞ +
ffiffiffiffiffiffiffiffiffi
T�t

p
Z>R�1 GUðTÞ�Pð0Þð Þ , Z>dU;

where

dU =
1ffiffiffiffiffiffiffiffiffi
T�t

p R�1 GUðTÞ�Pð0Þð Þ�WQðtÞ� �
and, similarly, we have that P(T)<GL(T) is in distribution equivalent to Z< dL with

dL =
1ffiffiffiffiffiffiffiffiffi
T�t

p R�1 GLðTÞ�Pð0Þð Þ�WQðtÞ� �
:

The price of Y**(T)=X**(T) at time t is given by the present value of wealth at time t under Q:

Y��ðtÞ=EQ max GLðTÞ;min GUðTÞ;PðTÞð Þð ÞjFQ
t

� �
=
ðdL
�1

GLðTÞϕðzÞdz +
ð1
dU
GUðTÞϕðzÞdz +

ðdU
dL

Pð0Þ +RðWQðtÞ +
ffiffiffiffiffiffiffiffiffi
T�t

p
zÞ

� 
ϕðzÞdz

=GLðTÞΦðdLÞ +GUðTÞ 1�ΦðdUÞ½ � + Pð0Þ +RWQðtÞ� �
ΦðdUÞ�ΦðdLÞ½ �

�R
ffiffiffiffiffiffiffiffiffi
T�t

p
ϕðdUÞ�ϕðdLÞ½ �

=GUðTÞ�R
ffiffiffiffiffiffiffiffiffi
T�t

p
HðdUÞ�HðdLÞ½ �:
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As H’(x)=Φ(x)∈ (0,1) and dL<dU, we deduce that

0≤HðdUÞ�HðdLÞ≤ dU�dL =
1ffiffiffiffiffiffiffiffiffi
T�t

p R�1ðGUðTÞ�GLðTÞÞ:

Returning to the standard measure ℙ, we can write both dL and dU as functions of t and w=W(t):

dLðt;wÞ= 1ffiffiffiffiffiffiffiffiffi
T�t

p R�1 GLðTÞ�Pð0Þð Þ�w�θt
� �

;

dUðt;wÞ= 1ffiffiffiffiffiffiffiffiffi
T�t

p R�1 GUðTÞ�Pð0Þð Þ�w�θt
� �

;

with

∂dL
∂t

=� θffiffiffiffiffiffiffiffiffi
T�t

p +
dL

2ðT�tÞ ;
∂dL
∂w

=� 1ffiffiffiffiffiffiffiffiffi
T�t

p ;

and similarly for dU. By exploiting the expressions for dL and dU, we rewrite Y**(t)= η(t,W(t)), where
η satisfies

∂η
∂t

=
R

2
ffiffiffiffiffiffiffiffiffi
T�t

p HðdUÞ�HðdLÞ½ ��R
ffiffiffiffiffiffiffiffiffi
T�t

p
H

0 ðdUÞ ∂dU∂t �H
0 ðdLÞ ∂dL∂t

� 	

=
R

2
ffiffiffiffiffiffiffiffiffi
T�t

p HðdUÞ�HðdLÞ½ �

+Rθ ΦðdUÞ�ΦðdLÞ½ �� R

2
ffiffiffiffiffiffiffiffiffi
T�t

p dUΦðdUÞ�dLϕðdLÞ½ �

=
R

2
ffiffiffiffiffiffiffiffiffi
T�t

p ϕðdUÞ�ϕðdLÞ½ � +Rθ ΦðdUÞ�ΦðdLÞ½ �;

∂η
∂w

=�R
ffiffiffiffiffiffiffiffiffi
T�t

p
H

0 ðdUÞ ∂dU∂w
�H

0 ðdLÞ ∂dL∂w

� �
=R ΦðdUÞ�ΦðdLÞ½ �;

∂2η
∂w2 =� Rffiffiffiffiffiffiffiffiffi

T�t
p ϕðdUÞ�ϕðdLÞ½ �;

so that

dY��ðtÞ= ∂η
∂t

+
1
2
∂2η
∂w2

� �
dt +

∂η
∂w

dWðtÞ=R ΦðdUÞ�ΦðdLÞð Þ θdt + dWðtÞð Þ:

Now equation (B2) states

dYðtÞ= σerðT�tÞ +
Ð T

t
λðsÞdsπðtÞ θdt + dWðtÞð Þ;

for YðtÞ= erðT�tÞ +
Ð T

t
λðsÞdsfXðtÞ + gðtÞg, hence Y**(t) is obtained via the strategy

π��ðt; yÞ=CerðT�tÞ +
Ð T

t
λðsÞds ΦðdUÞ�ΦðdLÞð Þ:

We now prove that it is possible to choose P(0) in such a way that the budget constraint X(0)= x0 is
satisfied. The budget constraint is

Yð0Þ= ηð0; 0Þ

=GUðTÞ�R
ffiffiffiffi
T

p
H R�1 GUðTÞ�Pð0Þffiffiffiffi

T
p

� �
�H R�1 GLðTÞ�Pð0Þffiffiffiffi

T
p

� �� 	
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with its derivative with respect to P(0) given by

Φ R�1 GUðTÞ�Pð0Þffiffiffiffi
T

p
� �

�Φ R�1 GLðTÞ�Pð0Þffiffiffiffi
T

p
� �

> 0:

The smallest and largest possible values are therefore the limits as P(0)→ ±∞: at the top end,

GUðTÞ�R
ffiffiffiffi
T

p
lim
q!1

ðR�1ðGUðTÞ�qÞ =
ffiffiffi
T

p

R�1ðGLðTÞ�qÞ =
ffiffiffi
T

p ΦðzÞdz=GUðTÞ;

and at the bottom end,

GUðTÞ�R
ffiffiffiffi
T

p
lim

q!�1

ðR�1ðGUðTÞ�qÞ =
ffiffiffi
T

p

R�1ðGLðTÞ�qÞ =
ffiffiffi
T

p ΦðzÞdz

=GUðTÞ�R
ffiffiffiffi
T

p R�1ðGUðTÞ�qÞffiffiffiffi
T

p �R�1ðGLðTÞ�qÞffiffiffiffi
T

p
� �

=GLðTÞ;

as expected. We conclude that it is always possible to find a value of P(0) such that the budget
constraint is satisfied as long as

GLðTÞ<Yð0Þ<GUðTÞ:

Assuming that this inequality holds, we have a strategy which is feasible.

It is left to show that

GLðtÞ≤X��ðtÞ≤GUðtÞ:

As

Y��ðtÞ=EQ max GLðTÞ;min GUðTÞ;PðTÞð Þð ÞjFQ
t

� �
;

we have that GL(T)≤Y**(t)≤GU(T), and conclude that

e�rðT�tÞ�
Ð T

t
λðsÞdsGLðTÞ�gðtÞ≤X��ðtÞ≤ e�rðT�tÞ�

Ð T

t
λðsÞdsGUðTÞ�gðtÞ:

We now prove that X** is optimal.

Let V0(t, y) be the value function of the proposed solution:

V0ðt; yÞ=E � 1
γ
e�γYðTÞ j YðtÞ= y

� �
:

We demonstrate the optimality of π** by demonstrating that V0 satisfies the Hamilton–Jacobi–
Bellman equation and that π** is the strategy which gives rise to Y(t). We are faced with the problem
that Y(t) is only defined as a function of W(t) and t. We therefore write

V0 t;YðtÞð Þ=V0 t; η t;WðtÞð Þð Þ=V t;WðtÞð Þ;

so that

∂V
∂t

=
∂V0

∂t
+
∂V0

∂y
∂η
∂t

; (C1)
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∂V
∂w

=
∂V0

∂y
∂η
∂w

;
∂2V
∂w2 =

∂2V0

∂y2
∂η
∂w

� �2

+
∂V0

∂y
∂2η
∂w2 : (C2)

Now

PðTÞ=Pð0Þ +R θT +WðTÞð Þ =D Pð0Þ +R θT +WðtÞ + ffiffiffiffiffiffiffiffiffi
T�t

p
Z

� �
;

where Z is a standard normal random variable under the original probability measure ℙ. As a result,

PðTÞ>GUðTÞ , Z>DUðt;wÞ =def dUðt;wÞ�θ
ffiffiffiffiffiffiffiffiffi
T�t

p

(DL follows similarly from P(T)<GL(T)). Given the previous definition, we get

V t;wð Þ=E � 1
γ
e�γYðTÞ j WðtÞ=w

� �

=� 1
γ

ðDL

�1
e�γGLðTÞϕðzÞdz +

ð1
DU

e�γGUðTÞϕðzÞdz
�

+
ðDU

DL

e�γ Pð0Þ +RðθT +w +
ffiffiffiffiffiffiffi
T�t

p
zÞð ÞϕðzÞdz

�

=� 1
γ

e�γGLðTÞΦðDLÞ + e�γGUðTÞ 1�ΦðDUÞð Þ
�

+ e�γPð0Þ�1
2θ

2ðT + tÞ�θw ΦðDU + θ
ffiffiffiffiffiffiffiffiffi
T�t

p
Þ�ΦðDL + θ

ffiffiffiffiffiffiffiffiffi
T�t

p
Þ

� 
;

with

∂V
∂w

=� 1
γ

e�γGUðTÞ ϕðDUÞffiffiffiffiffiffiffiffiffi
T�t

p �e�γGLðTÞ ϕðDLÞffiffiffiffiffiffiffiffiffi
T�t

p �θe�γPð0Þ�1
2θ

2ðT + tÞ�θw ΦðdUÞ�ΦðdLÞð Þ
�

�e�γPð0Þ�1
2θ

2ðT + tÞ�θw ϕðdUÞffiffiffiffiffiffiffiffiffi
T�t

p � ϕðdLÞffiffiffiffiffiffiffiffiffi
T�t

p
� ��

:

As

ϕðDUÞ= e�
1
2d

2
U + θdU

ffiffiffiffiffiffiffi
T�t

p
�1

2θ
2ðT�tÞffiffiffiffiffiffi

2π
p =ϕðdUÞe�1

2θ
2ðT�tÞ + γGUðTÞ�γPð0Þ�θw�θ2t

=ϕðdUÞeγGUðTÞ�γPð0Þ�1
2θ

2ðT + tÞ�θw

(similarly for DL), we get that

∂V
∂w

=Re�γPð0Þ�1
2θ

2ðT + tÞ�θw ΦðdUÞ�ΦðdLÞð Þ

and, consequently,

∂2V
∂w2 =Re�γPð0Þ�1

2θ
2ðT + tÞ�θw �θ ΦðdUÞ�ΦðdLÞð Þ� 1ffiffiffiffiffiffiffiffiffi

T�t
p ϕðdUÞ�ϕðdLÞð Þ

� �
:
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Then, from equation (C2),

∂V0

∂y
= e�γPð0Þ�1

2θ
2ðT + tÞ�θw;

∂2V0

∂y2
=

∂2V
∂w2 � ∂V0

∂y
∂2η
∂w2

∂η
∂w

� �2 =�γ
e�γPð0Þ�1

2θ
2ðT + tÞ�θw

ΦðdUÞ�ΦðdLÞ ;

and from equation (C1),

∂V0

∂t
= e�γPð0Þ�1

2θ
2ðT + tÞ�θw Rθ

2
ΦðdUÞ�ΦðdLÞð Þ + R

2
ffiffiffiffiffiffiffiffiffi
T�t

p ϕðdUÞ�ϕðdLÞð Þ
� �

�e�γPð0Þ�1
2θ

2ðT + tÞ�θw Rθ ΦðdUÞ�ΦðdLÞð Þ + R

2
ffiffiffiffiffiffiffiffiffi
T�t

p ϕðdUÞ�ϕðdLÞð Þ
� �

=�Rθ
2

e�γPð0Þ�1
2θ

2ðT + tÞ�θw ΦðdUÞ�ΦðdLÞð Þ;

from which

∂V0

∂t
� θ2

2

∂V0
∂y

� 2
∂2V0
∂y2

= 0

follows. Hence, the value function satisfies the Hamilton–Jacobi–Bellman equation: we conclude that
this must be the optimal strategy.
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